
Discrete Tomography with Distinct Rows: Relaxation 
 
 Hasmik, Sahakyan 

 

Institute for Informatics and 
Automation Problems 

Yerevan, Armenia 
e-mail: hsahakyan@sci.am 

 

Levon, Aslanyan 
 

Institute for Informatics and 
Automation Problems 

Yerevan, Armenia 
e-mail: lasl@sci.am 

 

 

ABSTRACT 
In this paper we consider a discrete tomography problem, 
where a new constraint - the requirement of distinct rows is 
imposed. We focus on a relaxed version of the problem, 
where some constant number of repeated rows are allowed; 
and investigate the complexity of the relaxed problem, as 
well as obtain several properties/results. 
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1. INTRODUCTION  
Reconstruction algorithms that are intended to solve 
particular inverse problems, have many applications in areas 
such as the image processing, medicine, computer 
tomography assisted engineering and design, etc. A large 
number of well-known medical problems require discrete 
reconstruction technique ([1], [2]). For example, in 
angiography, the values 0 and 1 (or some other discrete 
values) can represent the absence or presence of a contrast 
agent in heart chambers. In radiation therapy planning the 
input data compose a three dimensional discrete matrix that 
is to be covered by rectangular shapes in an optimized way. 
This matrix is to expire by a series of beams with a special 
criterion on the borderline.    
 
Reconstruction of discrete sets from given projections, - is 
one of the main tasks of Discrete Tomography.  Discrete sets 
can be presented as binary images or matrices. The 
line/weight sum of a line through the image is the sum of the 
values or the weights of the points on this line. The 
projection of the image in a certain direction consists of all 
the weight sums of the collinear lines passing through the 
image in this direction. Any binary image with exactly the 
same projections as of the original image represents a 
reconstruction of that image. 
 
Opposite to methods of Computerized Tomography which 
use several hundreds of projections, in Discrete Tomography 
a few projections are available. The main problem arising 
here is that there may appear different binary images with 
the same projections; and in case of a small number of 
projections the problem in this form can have a large number 
of solutions ([3]). For exactly two directions, the horizontal 
and vertical ones, in general it is possible to reconstruct an 
image in polynomial time ([4]). But in general, if only the 
horizontal and vertical projections are given, then the 
number of solutions can be exponentially large ([5]). 
 
On the other hand, for any set of more than two directions, 
the problem of reconstructing a binary image from its 
projections in those directions is NP-complete.  
 
One way to eliminate the mentioned problems is to suppose 
that there is some prior knowledge of the image to be 
reconstructed and this can reduce the search space of the 

possible solutions. It can be assumed that the image has 
some geometrical properties. Using geometrical knowledge 
about the discrete sets, such that convexity and connectivity, 
reconstruction is a well-studied area. However, the existence 
problems for convex matrices, as well as the existence 
problem for connected matrices are NP-complete ([6], [7]. In 
the meantime, the existence problem for horizontally and 
vertically convex and connected matrices can be solved in 
polynomial time ([8]. 
 
Another strategy here can be the search for a possibly good 
but not necessarily exact solution of the problem.  
 
In this paper we impose a new and specific for the domain of 
discrete tomography constraint/property – assuming that the 
rows of the matrix to be reconstructed are distinct. The 
combinatorial origin of this constraint comes from the ! -
dimensional binary cube, and is related mainly to the 
problem of quantitative characterization of ! -cube subsets 
partitioning ([9], [10]). We treat the row-difference 
constraint in line with the traditional constraints of 
connectivity or the convexity type. 
 
Consider a binary matrix !  of size ! ! ! . Let ! ! ! 𝑠! ! ! , ! !!  
denote the column sum vector of 𝐴, where  ! !   is the number 
of ones in the !–th column of ! . Obviously, 0 ≤ ! ! ! !  for  
each ! ,  1 ! 𝑗 ! ! . 
 
For a given integer vector 𝑆 ! ! ! ! ! ! ! ! ! !  let ! ! ! !  denote 
the class of binary matrices of size ! ! ! , which have the 
column sum vector ! ! ! ! ! ! ! ! ! ! ! . Let ! ! ! !  denote the 
subclass of ! ! ! !  where all matrices consist of all distinct 
rows. 
 
Consider the following problem ! ! ! : 
 
! ! ! ! ! : Existence/reconstruction of a binary ! ! !  matrix in 
the class ! ! ! ! . 
 
We consider also an optimization version of ! ! ! : 
 
For a binary matrix ! ! ! ! ! ! , let !" ! ! !  denote the number 
of distinct rows of ! . 
(! ! ! ! !"# ): Given an integer vector ! ! ! ! ! ! ! ! ! ! ! . Find 
! !"# ! ! ! ! !  such that !" ! !"# ! !"# ! ! ! ! !" ! ! ! . 

Clearly, !" ! ! ! ! ! , and !" ! ! !  if and only if 
! ! ! ! ! ! . Thus, if ! ! ! !  is not empty then any solution of 
! ! ! !!"# is a solution also for  𝑉! ! !. 
 
No polynomial algorithm is known for solving the problem 
! ! !  (! ! ! ! !"# ), and it is widely known that this problem is 
open in terms of algorithmic complexities ([11-13]). 
 
In this paper we consider a relaxed version of the problem, 
where some constant number of repeated rows are allowed; 
and we investigate the complexity of the relaxed problem, as 
well as obtain several properties/results related to the topic.  



 
 

2. RELAXATION /RESULTS 
 
Let !  be a binary matrix such that some rows of !  allowed 
to appear more than one time. Let !! , ! ! !! denote the rows 
(first appearances) that have repetitions in the matrix, and let 
! ! ! ! ! ! !  denote the repetition group sizes, respectively. 
Then, ! ! ! ! ! ! ! ! ! ! !  is the number of rows repeated 
(appearing as repetitions) in ! .  

Possible values of the number of groups of repeated rows 
(denoted by ! ) in an !  row matrix may vary between: 
! ! ! ≤ ! ! ! . 

And the possible values of the group sizes when the number 
of groups is !  vary between: ! ≤ ! ! ! ! ! ! ! ! ! ! ! , where 
! !  denotes the size of the ! -th group.  

For a given integer vector ! ! ! ! ! ! ! ! ! ! !  and a constant 
number ! ! !  let ! ! !𝑆!  denote the subclass of ! !𝑆), where 
at most !  number of repeated rows are allowed in matrices 
of ! ! !𝑆! . 

We consider the existence/reconstruction problem for the 
class ! ! ! ! ! : 

! ! ! ! ! !"# ! : Existence/reconstruction of binary ! ! !  
matrices in the class ! ! ! ! !  given the column weight vector 
! ! ! ! ! ! ! !!  and the repetition limitation ! . 
 
Let ! !

! ! ! !  denote the set of all integer vectors ! !
! ! ! ! ! ! ! ! !  for which ! !! ! ! , the class of ! ×𝑛 binary 
matrices with column sum 𝑆 ! ! ! ! , ! ! ! ! !  and with at most 
𝐶 number of repeated rows, - is not empty. 
 
! !

! ! ! ) (or simply ! ! !𝑛! ) denotes the case of distinct rows. 
 
Obviously, ! ! ! ! ! !

! ! ⊆ ! ⊆ ! !
! ! ! ! . 

Let us note that the complete characterization of the set 
! ! !  is known [11-13]. Now we obtain results/properties 
for ! !

! (𝑛) (some of them have their analogues for ! ! !  
given in [11-13]). 

Lemma 1. If (! ! !⋯ ! ! ! ! ! ! !
! ! ! !  then ! ! ! !⋯ ! ! −

!!! ! ! ! ! ! ! ! !
! !𝑛!  , for every 𝑗, ! ! 𝑗 ! ! .  

Proof. 

Let ! ! ! ! ! ! ! ! ) ! 𝐷!
! ! ! ), and 𝐴 be a binary ! ! !  matrix 

with column sum vector ! ! ! ! ! , ! ! ), and with at most !  
number of repeated rows. If to invert elements of the ! -th 
column (interchange ones and zeros), the resulting matrix 
will have the column sum ! 𝑠! ! ! ! ! ! !!! ! ! ! ! !  and again 
will contain the same number of repeated rows. !  
 
It follows from Lemma 1 that it is to restrict the attention to 
the “upper” subclass ! !

! (! !  of vectors of ! !
! ! ! ! , where 

! ! ! ! ! !  for all ! ! ! ≤ ! . 
 

Lemma 2. If ! ! ! ! ! , 𝑠! ! ! ! !
! ! ! !    and ! ! ! ! ! !  for some 

index !  then ! ! ! !⋯ ! ! ! ! ! ! ! ! ! !) ! ! !
! ! ! ! .   

Proof. 

Let ! ! !! ! ! ! !! ! ! !
! ! ! )  and !  be a binary ! ! !  matrix with 

column sum vector ! ! ! ! ! ! ! ! ! , and with at most !  number 
of repeated rows (that is, ! ! ! ! ! ! ! ). Consider the index !  
with ! ! ! ! ! ! .  

Consider cases: 

a) All groups of repeated rows contain 0 in the ! -th 
position, and thus all rows with 1 in the ! -th position 
are distinct. ! ! ! ! ! !   implies that the number of 
ones in the ! -th column of !  is greater than the 
number of zeros, and hence within the distinct rows 
of !  there exist a row (say, the !-th one) with 1 in the 
! -th position, such that 𝐴 does not contain the row 
which differs from the !-th row only in the 𝑗-th 
position. Replacing this 1 in the ! -th position of the 
!-th row with 0, we will not cause new repeating 
rows. 

b) Some group of repeated rows contain 1 in the ! -th 
position. Then, replacing 1 in the ! -th position of 
some row of the group with 0 will decrease the 
number of repeating rows in this group, at the same 
time this will cause at most one new row repetition. 
∎ 

Definition. ! ! ! ! ! , ! ! !  is an upper boundary element of 
! !
! ! ! !  if no ! ! !,⋯ ! ! ! !  with ! !, ! , 𝑞! ! (! ! ! ! ! ! ! !  

belong to ! !
! ! ! ! , i.e., there is no matrix with at most !  

repeated rows and with the column sum vector  -!! 𝑠! !⋯ ! ! ! !
! ! ! ! ! ! !  (for an arbitrary position ! ). 
 
Lemma 3. Let !  be an upper boundary element of ! !

! ! ! ! . 
Then for every matrix !  of ! ! : 

a) ! ! !  (number of groups of repeated rows), and 
the repeated rows consist of all ones, and  

b) ! ! ! ! ! ! , i.e., there are exactly !  repeated rows 
in the group mentioned in point a). 
 

Proof. 

a) Assume that the assertion is not true, and there is a 
matrix !  in ! !  that contains a group of repeated rows 
containing 0 in some position. Replacing 0 with 1 in some 
row of the group will move out the row from that group, 
decreasing the group size by 1. At the same time this may 
increase by 1 the size of some other group of repetitions (if 
such group exists). We get a matrix with the column sum 
vector greater than ! , and with at most !  repeated rows. This 
contradicts the definition of upper boundary elements. 

b) Suppose that the assertion is not true, and consider 
some matrix !  in ! !  that has less than 𝐶 repeated rows. 
Recall that there is only one group of repetitions, and the 
repeated rows consist of all ones. Then, this group size is 
less than ! . Consider an arbitrary row out of that group, and 
replace all 0s in this row with 1. This will lead to a matrix 
with the column sum vector greater than ! , and  with one 
additional repeated row so that the total row repetition is 
restricted again by the same ! , which contradicts the 
definition of upper boundary elements in this class. !  

 

The converse assertion, which is easy to check, is given by 
the following Lemma 4: 



Lemma 4. If a binary ! ! !  matrix !  contains ! ! !  rows 
consisting of all ones, and the remaining rows are all distinct, 
then ! , the column sum vector of !  is an upper boundary 
element of ! !

! (𝑛). 

 

The following Lemma 5 gives the relation between the upper 
boundary elements of ! ! ! ! !  and ! !! !

! ! ! ! ! ! .  

Lemma 5. If ! ! ! ! ! ! ! ! ) is an upper boundary element of 
! ! ! ! ! , then ! 𝑠! + ! , ! !𝑠! ! ! !  is an upper boundary 
element of ! ! ! !

! ! ! ! ; and vice versa: for each upper 
boundary element ! ! ! ! ! ! ! ! !  of ! ! ! !

! ! ! ! , 
! ! ! ! 𝐶! ! ! ! ! ! ! ) is an upper boundary element of 
! !! ! ).   

Proof. 

Suppose that ! ! ! ! ! ! ! ! !  is an upper boundary element of 
𝐷! ! ! ! , and !  is an ! ! !  binary matrix with the column sum 
! ! ! ! ! ! ! ! !  and with distinct rows. Compose new matrix ! ! 
by appending !  new rows, consisting of all ones, into ! .  
Since !  has already such a row (it follows from the result 
that the upper boundary elements of ! ! ! ! !  correspond to 
the “one” values sets of corresponding monotone Boolean 
functions [11]), then ! ! will have ! ! !  rows consisting of 
all ones. Then, ! ! ! ! ! ! ! ! ! ! ! ! ! , the column sum vector 
of  𝐴! belongs to 𝐷! ! !

! ! ! ! , and according to Lemma 4, it is 
an upper boundary element of ! ! ! !

! ! ! ! .  

Now suppose that ! ! ! ! ! ! ! ! !  is an upper boundary element 
of ! ! ! !

! ! ! ! , and !  is an ! ! !  binary matrix with the 
column sum ! ! ! ! ! !𝑞! ! . According to Lemma 3 𝐴 contains 
exactly !  repeated rows consisting of all ones. It follows that 
! ! ! !  for all ! . Removing 𝐶 number of repeated rows will 
lead to a matrix with all distinct rows and with column sum 
! ! ! ! ! ! ! !𝑞! ! ! ! .   ∎ 

 

Theorem 1. Given an integer vector 𝑆 ! (! !,⋯ !𝑠! ) with 

! /! ! ! ! ≤ ! . Then, ! ! ! ! ! ! ! !𝑉! ! ! ! !" ), i.e., 𝑉_𝑑 is 
polynomial reducible to ! ! ! !𝑟𝑒𝑝.  

Proof. 

Let !!  denote an instance of the problem ! ! ! : given 
! ! ! 𝑠!!⋯ ! ! ! ! , and ! . We construct the following instance 
𝐼!  of ! ! ! ! !"# :  ! ! ! ! ! ! + ! !⋯ ! ! ! ! ! !  and ! ! ! ! ! ! . 
Now we prove that !!  is a positive instance for ! ! !  if and 
only if !!  is a positive instance of ! ! ! ! !"# .  

Suppose that 𝐼!  is a positive instance for ! ! ! , and !  is a 
! ! !  binary matrix with the column sum ! ! ! ! ! ! ! ! !  and 
with distinct rows. Then the matrix 𝐴!, constructed by 
appending !  rows consisted of all ones, to ! , - will be a 
solution of instance !!  for ! ! ! ! !"# . 

Now suppose that !!  is a positive instance of ! ! ! ! !"# , and 
! ! is a ! ! ! ! ! ! !  binary matrix ! ! with the column sum 
! ! ! ! ! ! ! ! ! ! ! ! !  and with at most !  repeated rows. 
Assume that there are !  groups of repeated rows in ! !, and 

! ! ! ! ! ! !  are the corresponding group sizes: ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! !  , and ! ! ! ! . Now, we leave only one row in 
each group of repeated rows, and remove the ! !  repeated 
rows from ! ! (in case if ! ! ! ! , we remove from ! ! also 
! ! ! !  arbitrary rows). The obtained ! ! !  matrix will 
consist of all distinct rows, and let ! !! ! ! ! !!

! ! ! ! ! !!
! !  

denote its column sum vector. 

Suppose that ! ! ! ! , ! ! ! , and the repeated rows consist of 
all ones. In this case, ! !! ! ! . Hence,  !!  is a positive 
instance for ! ! ! . 

Otherwise, ! !! ! ! , and in the meantime in all components 
where ! !!! ! ! ! , we have also, ! !!! ! ! ! ! . Then, there exists 
(and we can construct) a matrix with all distinct rows and the 
column sum ! ! ! ! ! ! ! ! ! ! !  [11,13]. Hence,  !!  is a positive 
instance for ! ! ! .  !  

It follows from Theorem 1 that: if there is a polynomial time 
algorithm that solves the problem ! ! ! ! !"# , then also there is 
a polynomial time algorithm that solves ! ! ! . 

Let  ! !  and ! ! ! !"#  denote solution matrices for ! ! ! !!!"#   and 
! ! ! ! !"# , respectively. Then: 

! ! ! ! !" ! ! ! ! ,  

!" ! ! ! ! !"# ! ! ! ! ! , and hence: 

!" ! ! ! !" ! ! ! ! !"# ! ! ! .  

In this manner, any algorithm that gives a solution to 
! ! ! ! !"# , will serve as absolute approximation algorithm for !
! ! ! !!!"# . And thus, the following theorem holds: 

Theorem 2. 

If there exists a polynomial time absolute ! -approximation 
algorithm for ! ! ! !!!"#  then there exists also a polynomial 
time exact algorithm for ! ! ! . 

 
4. CONCLUSION 
 
A discrete tomography problem is considered in this paper 
with a new constraint: the requirement of distinct rows in the 
matrix to be reconstructed. This is a specific constraint for 
the domain, whilst the combinatorial origin comes from the 
! -dimensional binary cube, and mainly is related to the 
problem of quantitative characterization of ! -cube subsets 
partitioning. 
This problem is known through a number of alternative 
representations being an open problem in terms of the 
algorithmic complexities.  
In the process of seeking good approximate solutions for the 
problem we considered a relaxed version of the problem, 
where some constant number of repeated rows are allowed. 
We investigated the complexity of the relaxed version, and 
concluded that the relaxed version is not easier than the 
original problem.  
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