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ABSTRACT
A 2-partition of a graph G is a function f : V (G) →
{0, 1}. A 2-partition f of a graph G is locally-balanced
with an open neighborhood if for every v ∈ V (G),
||{u ∈ NG(v) : f(u) = 1}| − |{u ∈ NG(v) : f(u) = 0}|| ≤
1, where NG(v) = {u ∈ V (G) : uv ∈ E(G)}. A 2-
partition f ′ of a graph G is locally-balanced with a
closed neighborhood if for every v ∈ V (G),
||{u ∈ NG[v] : f ′(u) = 1}| − |{u ∈ NG[v] : f ′(u) = 0}|| ≤
1, where NG[v] = NG(v)∪ {v}. In this paper we obtain
some conditions for the existence of locally-balanced 2-
partitions of certain graphs. In particular, we prove
some necessary condition for the existence of locally-
balanced 2-partitions of Eulerian graphs. Moreover,
we also obtain some results on the existence of locally-
balanced 2-partitions of rook’s graphs and powers of
cycles.
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1. INTRODUCTION

All graphs considered in this paper are finite, undi-
rected, and have no loops or multiple edges. Let V (G)
and E(G) denote the sets of vertices and edges of a
graph G, respectively. The set of neighbors of a vertex
v in G is denoted by NG(v). Let NG[v] = NG(v) ∪ {v}.
The degree of a vertex v ∈ V (G) is denoted by dG(v)
and the maximum degree of vertices in G by ∆(G). A
graph G is odd if the degree of every vertex of G is
odd. A graph G is Eulerian if it has a closed trail con-
taining every edge of G. We use the standard nota-
tions Cn and Kn for the simple cycle and the complete
graph on n vertices, respectively. A graph is a power
of cycle, denoted Ck

n, if V
(
Ck

n

)
= {v0, . . . , vn−1} and

E
(
Ck

n

)
= E1 ∪ · · · ∪ Ek, where Ei = {vjv(j+i) (mod n) :

0 ≤ j ≤ n − 1}. Clearly, Ck
n is a 2k-regular (k ∈ N)

graph. The terms and concepts that we do not define
can be found in [6, 13].

Let G and H be graphs. The Cartesian product G�H
of graphs G and H is defined as follows:

V (G�H) = V (G)× V (H),
E(G�H) = {(u1, v1)(u2, v2) : (u1 = u2 ∧ v1v2 ∈

E(H)) ∨ (v1 = v2 ∧ u1u2 ∈ E(G))}.

The Cartesian product Km�Kn of two complete graphs
Km and Kn is called a rook’s graph.

A 2-partition of a graph G is a function f : V (G) →
{0, 1}. A 2-partition f of a graph G is locally-balanced
with an open neighborhood if for every v ∈ V (G),
||{u ∈ NG(v) : f(u) = 1}| − |{u ∈ NG(v) : f(u) = 0}|| ≤
1. A 2-partition f ′ of a graph G is locally-balanced with
a closed neighborhood if for every v ∈ V (G),
||{u ∈ NG[v] : f ′(u) = 1}| − |{u ∈ NG[v] : f ′(u) = 0}|| ≤
1. The concept of locally-balanced 2-partition of graphs
was introduced by Balikyan and Kamalian [10] in 2005,
and it can be considered as a special case of equitable
colorings of hypergraphs [1]. In [1], Berge obtained some
sufficient conditions for the existence of equitable color-
ings of hypergraphs. In [5, 7, 8, 12], the authors con-
sidered the problems of the existence and construction
of proper vertex-coloring of a graph for which the num-
ber of vertices in any two color classes differ by at most
one. In [9], 2-vertex-colorings of graphs were consid-
ered for which each vertex is adjacent to the same num-
ber of vertices of every color. In particular, in [9], it
was proved that the problem of the existence of such a
coloring is NP -complete even for the (2p, 2q)-biregular
(p, q ≥ 2) bipartite graphs. In [10], Balikyan and Ka-
malian proved that the problem of existence of locally-
balanced 2-partition with an open neighborhood of bi-
partite graphs with maximum degree 3 is NP -complete.
Later, they also proved [11] the similar result for locally-
balanced 2-partitions with a closed neighborhood. In [2,
3], the necessary and sufficient conditions for the exis-
tence of locally-balanced 2-partitions of trees were ob-
tained. In [4], the authors obtained the necessary and
sufficient conditions for the existence of locally-balanced
2-partitions of complete multipartite graphs.

In the present paper we obtain some conditions for the
existence of locally-balanced 2-partitions of certain graphs.
In particular, we prove some necessary condition for
the existence of locally-balanced 2-partitions of Eule-
rian graphs. Moreover, we also obtain some results on
the existence of locally-balanced 2-partitions of rook’s
graphs and cycle powers.



2. THE MAIN RESULTS

We first prove the following two results.

Theorem 1. Let G be an Eulerian graph and k =
min{q : v ∈ V (G), dG(v) = p2q, where p is odd and q ∈
Z≥0}. If G has a locally-balanced 2-partition with an
open neighborhood, then

|{v : v ∈ V (G), dG(v) = p2k, where p is odd}| is even.

Corollary 2. Every 2k-regular graph of odd order has
no locally-balanced 2-partition with an open neighbor-
hood.

Theorem 3. Let G be an odd graph and k = min{q :
v ∈ V (G), dG(v) + 1 = p2q, where p is odd and q ∈
Z≥0}. If G has a locally-balanced 2-partition with a
closed neighborhood, then

|{v : v ∈ V (G), dG(v) + 1 = p2k, where p is odd}| is
even.

Next we consider rook’s graphs. For these graphs we
prove the following results.

Theorem 4. If m,n ≥ 2, then the graph Km�Kn has
a locally-balanced 2-partition with a closed neighborhood
if and only if m and n are even.

Theorem 5. If either m and n are odd and m > 2 or
m and n are even and m,n > 2, then the graph Km�Kn

has no locally-balanced 2-partition with an open neigh-
borhood.

Finally, we consider powers of cycles. For these graphs
we prove the following results.

Theorem 6. If n is odd (n, k ∈ N), then Ck
n has no

locally-balanced 2-partition with an open neighborhood.

Theorem 7. If n and k are even (n, k ∈ N), then Ck
n

has a locally-balanced 2-partition with an open neighbor-
hood.

Theorem 8. If n and n
k+1

are even (n, k ∈ N), then
Ck

n has a locally-balanced 2-partition with an open neigh-
borhood.

Theorem 9. If n is even, k is odd and lcm(n,k+1)
k+1

is odd (n, k ∈ N), then Ck
n has no locally-balanced 2-

partition with an open neighborhood.

REFERENCES
[1] C. Berge, Graphs and Hypergraphs, Elsevier

Science Ltd, 1985.

[2] S.V. Balikyan, ”On existence of certain
locally-balanced 2-partition of a tree”, Mathematical
Problems of Computer Science 30, pp. 25-30, 2008.

[3] S.V. Balikyan, R.R. Kamalian, ”On existence of
2-partition of a tree, which obeys the given
priority”, Mathematical Problems of Computer
Science 30, pp. 31-35, 2008.

[4] A.H. Gharibyan, P.A. Petrosyan,
”Locally-balanced 2-partitions of complete
multipartite graphs”, 6th Polish Combinatorial
Conference, Bedlewo, Poland, p. 19, 2016.

[5] A. Hajnal, E. Szemeredi, ”Proof of a conjecture of
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