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ABSTRACT

A proper edge-coloring of a graph G is a mapping « :
E(G) — N such that a(e) # a(e’) for every pair of ad-
jacent edges e,e’ € E(G). A proper edge-coloring of a
graph G with colors 1,...,t is called a complete t-edge-
coloring if for every pair of colors i and j, there are two
edges with a common vertex, one colored by 7 and the
other colored by j. The largest value of ¢ for which G has
a complete t-edge-coloring is called the achromatic index
1'(G) of G. In this paper we study the achromatic index
of complete and complete bipartite graphs. In partic-
ular, we prove that for any m,n € N, ¢'(Kmint1) >
' (Km,n)+m+n—1. We also prove that for any m,n €

N7 1/)/(Km,n) 2 wl (K%yﬁ) (w, (K(mm)) + 1) )
where (m,n) is the greatest common divisor of m and
n.
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1. INTRODUCTION

All graphs considered in this paper are finite, undi-
rected, and have no loops or multiple edges. Let V(G)
and E(G) denote the sets of vertices and edges of a
graph G, respectively. The maximum degree of vertices
in G is denoted by A(G), the chromatic number of G by
X(G) and the chromatic index of G by x'(G). We use
the standard notations K, and Ky, , for the complete
graph on n vertices and the complete bipartite graph,
one part of which has m vertices and the other part has
n vertices, respectively. For a graph G, by L(G) we
denote the line graph of the graph G. The terms and
concepts that we do not define can be found in [3, 7,
17].

A proper t-vertex-coloring of a graph G is a mapping
a: V(G) = {1,...,t} such that for any uv € E(G),
a(u) # a(v). The chromatic number x(G) of a graph
G is the smallest value of ¢ for which it has a proper
t-vertex-coloring. A proper t-vertex-coloring of a graph
G is a complete t-vertez-coloring of a graph G if for
every pair of colors i and j, there is an edge uv such
that a(u) = ¢ and a(v) = j. The achromatic num-
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ber ¢(G) of G is the largest value of ¢ for which G has
a complete t-vertex-coloring. The achromatic number
of graphs was introduced by Harary and Hedetniemi in
[8]. In [9], Harary, Hedetniemi and Prins showed that
for any graph G if x(G) < t < ¥(G), then G has a
complete t-vertex-coloring. In general, it is known that
the problem of determining of the achromatic number
is N P-complete for bipartite graphs, cographs, interval
graphs, and even for trees [1, 6, 15]. The achromatic
numbers of graph operations were considered by Hell
and Miller in [10], where the authors obtained some
lower bounds for the achromatic number of direct prod-
ucts of graphs.

A proper edge-coloring of a graph G is a mapping « :
E(G) — N such that a(e) # a(e') for every pair of
adjacent edges e, e’ € E(G). A proper edge-coloring of
a graph G with colors 1,...,t is called a complete t-
edge-coloring if for every pair of colors ¢ and j, there
are two edges with a common vertex, one colored by
i and the other colored by j. The largest value of ¢
for which G has a complete t-edge-coloring is called the
achromatic index ¢'(G) of G. Clearly, for any graph
G, ¥'(G) = Y(L(G)). The problem of determination
of the achromatic index of the complete graph K, was
first considered by Bouchet [2], who proved that there
is an intimate connection between this parameter and
the existence of finite projective planes.

Theorem 1. If q is odd and n = ¢*> + g + 1, then
Y'(Kn) = q-n if and only if a finite projective plane
of order q exists. Moreover, if ¥'(K,) = q-n, then
the vertices covered by each color class in any complete
' (Ky,)-edge-coloring form the lines of a finite projective
plane with the vertices of K, as points.

The achromatic index of complete graphs was also con-
sidered by Jamison [14]. In [14], the author obtained
some lower and upper bounds for the achromatic in-
dex of complete graphs. He also showed that ifn > 4,
then ' (Kn+2) > ¢'(Kp) + 2. Moreover, Jamison [14]
showed that the achromatic index of complete graphs
' (K,) grows asymptotically like n?. The achromatic
index of complete bipartite graphs was first considered
by Chiang and Fu [4]. In [4], the authors proved that
for any m,n € N, the following upper bound holds:
V' (Km,n) < Maxi<k<m min{[ %* |, k(m+n—1)—k2—|—1}.
In [4], Chiang and Fu also proved the following lower
bound for ' (Km,n).



Theorem 2. For any positive integers m,n > 2,

m+n—1,ifn>m=2
orm=mn>2,
2n—[L-‘,ifn>m>2.

m—1

P (Kom,n)

\%

In the same paper it was proved that ¥’ (K2,) =n+1
if n >3, and ¢'(Ks3) =5, ¢'(Ksn) = |2] if n >
4. In [11, 12, 13], the achromatic indices ¥’ (K4,,) and
' (K5,n) were determined. In general, the achromatic
indices of complete and complete bipartite graphs are
unknown. Some other results on the topic were obtained
in [2, 5, 14]. In [16], the achromatic indices of graph
products were considered. In particular, the authors
proved that for any m,n € N, the following lower bound

holds: ¥/ (Kpmn) = 0 (Kum) 4+ (Kn) 1 (Km) -0 (Ky).

In the present paper we study the achromatic index of
complete and complete bipartite graphs. In particu-
lar, we prove that for any m,n € N, o' (Kpqnt1) >
' (Km,n)+m+n—1. We also prove that for any m,n €

N, ¢ (Knn) > 0 (K o) (@ (Kmany) +1) -

2. THE MAIN RESULTS

We first prove the following lemma.

Lemma 3. If for a graph G, ¢¥'(G) > k- A(L(G)),
then for any complete ' (G)-edge-coloring of G, each
color is used at least k — 1 times.

Using this lemma we prove the following result on the
achromatic index of complete graphs.

Theorem 4. For any m,n € N, we have
w/(Km+n+1) 2 wl(Km,n) +m+n— 1.

Next we show that there is a connection between the
achromatic indices of complete and complete bipartite
graphs.

Theorem 5. For any n € N, we have

W (Kpn) >0 (K) + 1.

Proof. Let V(Ky) = {v1,...,vn} and a be a com-
plete 9’(K,)-edge-coloring of K,. Also, let V(K,») =
UUW, where U = {u1,...,un}, W = {w1,...,wy} and
E(Knn) ={uiw;: 1<i<n,1<j<n}

Define an edge-coloring 8 of K, . as follows:

1) for every edge v;v; € E(Ky), let

Bluiw;) = B(ujw;) = cvivy);

2) fori=1,...,n, let

Bluiw;) = ' (Kn) + 1.

It is not difficult to see that 3 is a complete (¢'(K,) +
1)-edge-coloring of Ky . Thus, ' (Knn) > ' (Kn) +
1. O

Using the previous theorem we prove the following re-
sults on the achromatic index of complete bipartite graphs.

Theorem 6. For any m,n € N, we have

Theorem 7. For any n € N, we have

' (Kn,n) > MaXg|n(de1) {1/), (Kﬂ,g> (¥’ (Ka) + 1)}
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