On the Existence of Bipartite Graphs Which are not Cyclically-Interval Colorable

Rafayel R. Kamalian

Institute for Informatics and Automation Problems, National Academy of Sciences of Armenia, 0014, Yerevan, Armenia

e-mail: rrkamalian@yahoo.com

ABSTRACT

A proper edge *t*-coloring of an undirected, simple, finite, connected graph *G* is a coloring of its edges with colors 1, 2, ..., *t* such that all colors are used, and no two adjacent edges receive the same color. A cyclically interval *t*-coloring of a graph *G* is a proper edge *t*-coloring of *G* such that for each its vertex *x*, either the set of colors used on edges incident to *x* or the set of colors not used on edges incident to *x* forms an interval of integers. For any $t \in N$, let \mathfrak{M}_t be the set of graphs for which there exists a cyclically-interval *t*-coloring. Examples of bipartite graphs that do not belong to the class $\bigcup_{t>1} \mathfrak{M}_t$

are constructed.

Keywords

Cyclically interval *t*-coloring, bipartite graph.

We consider undirected, simple, finite, and connected graphs. For a graph G we denote by V(G) and E(G)the sets of its vertices and edges, respectively. For a graph G, we denote by $\Delta(G)$ and $\chi'(G)$ the maximum degree of a vertex of G and the chromatic index of G [1], respectively. The terms and concepts which are not defined can be found in [2].

For an arbitrary finite set A, we denote by |A| the number of elements of A.

A proper edge t-coloring of an undirected, simple, finite, connected graph G is a coloring of its edges with colors 1, 2, ..., t such that all colors are used, and no two adjacent edges receive the same color. A cyclically interval t-coloring of a graph G is a proper edge t-coloring of G such that for each its vertex x, either the set of colors used on edges incident to x or the set of colors not used on edges incident to x forms an interval of integers.

Cyclically-interval colorings of bipartite graphs can be used for the mathematical modelling of the problems of existence and construction of time-tables of "twosided" processes. An example of this is the production, in which one side represents the requirements, and the other side represents the machines which meet these requirements. Cyclically-interval colorings correspond to the case when the process should be organized without "gaps" in a "24-hour" regime. In such a case, the color of the edge in a cyclically-interval coloring of a bipartite graph is interpreted as the number of the "hour", during which the machine meets the requirement.

For any $t \in N$, we denote by \mathfrak{M}_t the set of graphs for which there exists a cyclically-interval *t*-coloring. Let

$$\mathfrak{M} \equiv \bigcup_{t \ge 1} \mathfrak{M}_t.$$

For an arbitrary tree D, it was shown in [3, 4] that $D \in \mathfrak{M}$, and, moreover, all possible values of t were found for which $D \in \mathfrak{M}_t$. For an arbitrary simple cycle C, it was shown in [5, 6] that $C \in \mathfrak{M}$, and, moreover, all possible values of t were found for which $C \in \mathfrak{M}_t$. Some interesting results on this and related topics were obtained in [7–21].

In this paper, the examples of bipartite graphs that do not belong to the class ${\mathfrak M}$ are constructed.

For any integer $m \geq 2$, set:

$$V_{0,m} \equiv \{x_0\}, V_{1,m} \equiv \{x_{i,j}/1 \le i < j \le m\},$$
$$V_{2,m} \equiv \{y_{p,q}/1 \le p \le m, 1 \le q \le m\},$$
$$E'_m \equiv \{(x_0, y_{p,q})/1 \le p \le m, 1 \le q \le m\}.$$

For any integers i, j, m satisfying the inequalities $m \ge 2$, $1 \le i < j \le m$, set:

$$E_{i,j,m}'' \equiv \{(x_{i,j}, y_{i,q}), (x_{i,j}, y_{j,q})/1 \le q \le m\}.$$

For any integer $m \ge 2$, let us define a graph G(m) by the following way:

$$G(m) \equiv \left(\bigcup_{k=0}^{2} V_{k,m}, E'_{m} \cup \left(\bigcup_{1 \le i < j \le m} E''_{i,j,m}\right)\right).$$

It is not difficult to see that for any integer $m \ge 2$, G(m) is a bipartite graph with $\Delta(G(m)) = \chi'(G(m)) = m^2$, $|V(G(m))| = \frac{3m^2 - m}{2} + 1$, $|E(G(m))| = m^3$.

Theorem 1. For any integer $m \geq 8$, $G(m) \notin \mathfrak{M}$.

We prove the theorem by the method of contradiction. We show that for any $m \ge 8$, if the statement of the theorem is wrong, then in every cyclically-interval *t*-coloring of G(m) ($\Delta(G(m)) \le t \le |E(G(m))|$) we can find an edge (z', z'') of the graph, the color of which cannot be used for an edge that is incident to z'.

REFERENCES

 V.G. Vizing, "The chromatic index of a multigraph", *Kibernetika 3*, pp. 29–39, 1965.

- [2] D.B. West, "Introduction to Graph Theory", *Prentice-Hall*, New Jersey, 2001.
- [3] R.R. Kamalian, "On a number of colors in cyclically interval edge colorings of trees", Research report LiTH-MAT-R-2010/09-SE, Linköping University, 2010.
- [4] R.R. Kamalian, "On cyclically-interval edge colorings of trees", Buletinul of the Academy of Sciences of the Republic of Moldova, Matematica 1(68), pp. 50–58, 2012.
- [5] R.R. Kamalian, "On cyclically continuous edge colorings of simple cycles", *Proceedings of the CSIT Conference, Yerevan*, pp. 79–80, 2007, (in Russian).
- [6] R.R. Kamalian, "On a number of colors in cyclically-interval edge-colorings of simple cycles", *Open Journal of Discrete Mathematics 3*, pp. 43–48, 2013.
- [7] S. Altinakar, G. Caporossi, A. Hertz, "On compact k-edge-colorings: A polynomial time reduction from linear to cyclic", *Discrete Optimization 8*, pp. 502–512, 2011.
- [8] A.S. Asratian, "Investigation of some mathematical model of scheduling theory", *Doctoral dissertation*, *Moscow State University*, Moscow, 1980, (in Russian).
- [9] J.J. Bartholdi, J.B. Orlin, H.D. Ratliff, "Cyclic scheduling via integer programs with circular ones", *Operations Research* 28, pp. 1074–1085, 1980.
- [10] W. Dauscha, H.D. Modrow, A. Neumann, "On cyclic sequence type for constructing cyclic schedules", *Zeitschrift fr Operations Research 29*, pp. 1–30, 1985.
- [11] T.R. Jensen, B. Toft, "Graph Coloring Problems", Wiley Interscience Series in Discrete Mathematics and Optimization, 1995.
- [12] R.R. Kamalian, "Interval edge colorings of graphs", *Doctoral Thesis*, the Institute of Mathematics of the Siberian Branch of the Academy of Sciences of USSR, Novosibirsk, 1990.
- [13] M. Kubale, "Graph Colorings", American Mathematical Society, 2004.
- [14] M. Kubale, A. Nadolski, "Chromatic scheduling in a cyclic open shop", *European Journal of Operational Research* 164, pp. 585–591, 2005.
- [15] A. Nadolski, "Compact cyclic edge-colorings of graphs", Discrete Mathematics 308, pp. 2407–2417, 2008.
- [16] D. de Werra, N.V.R. Mahadev, Ph. Solot,
 "Periodic compact scheduling", ORWP 89/18, Ecole Polytechnique Federale de Lausanne, 1989.
- [17] D. de Werra, Ph. Solot, "Compact cylindrical chromatic scheduling", ORWP 89/10, Ecole Polytechnique Federale de Lausanne, 1989.
- [18] D. de Werra, Ph. Solot, "Compact cylindrical chromatic scheduling", SIAM J. Discrete Math. 4(4), pp. 528–534, 1991.
- [19] A. Kotzig, "1-factorizations of Cartesian products of regular graphs", J. Graph Theory 3, pp. 23–34, 1979.

- [20] C.J. Casselgren, B. Toft, "On interval edge colorings of biregular bipartite graphs with small vertex degrees", J. Graph Theory 80, pp. 83–97, 2015.
- [21] P.A. Petrosyan, S.T. Mkhitaryan, "Interval cyclic edge-colorings of graphs", *Discrete Math. 339*, pp. 1848–1860, 2016.