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ABSTRACT 
A cap in a projective or affine space over a finite field 𝐹𝑞 
with q elements is a set of points no three of which are 

collinear. We give two new recurrence constructions for 

complete caps in affine space 𝐴𝐺(𝑛, 3), which leads to some 

new upper and lower bounds on the possible minimal and 

maximal cardinality of complete caps, respectively.
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1. INTRODUCTION
A cap in a projective 𝑃𝐺(𝑛, 𝑞) space or affine 𝐴𝐺(𝑛, 𝑞) 

space over a finite field 𝐹𝑞  with q elements is a set of points

(vectors) no three of which are collinear. A cap is called 

complete when it cannot be extended to a large one. The 

main problem in the theory of caps is to find the minimal and 

maximal sizes of complete caps in 𝑃𝐺(𝑛, 𝑞) or 𝐴𝐺(𝑛, 𝑞), see 

the survey papers [1, 2, 3] and the references therein. Note 

that the problem of determining the minimum size of a 

complete cap in a given space is of particular interest in 

Coding Theory [2]. The only complete cap in 𝐴𝐺(𝑛, 2) is the 

whole 𝐴𝐺(𝑛, 2). The trivial lower bound for the size of the 

smallest complete cap in 𝐴𝐺(𝑛, 𝑞) is √2 ∙ 𝑞
𝑛−1

2 . For  𝑞 even,  

there exist complete caps in 𝐴𝐺(𝑛, 𝑞) with less than 𝑞
𝑛

2

points [4, 5, 6]. But for 𝑞 odd, complete caps in 𝐴𝐺(𝑛, 𝑞) 

with less than 𝑞
𝑛

2  points are known only for 𝑛 ≡ 0(𝑚𝑜𝑑4), 

𝑛 ≡ 2(𝑚𝑜𝑑4) and for small values of  𝑛 and 𝑞 [3, 6, 7, 8]. In 

this paper we give two new recurrence constructions for 

complete caps in affine space 𝐴𝐺(𝑛, 3). 

2. MAIN RESULTS
It is easy to see that if 𝑆 is a cap in 𝐴𝐺(𝑛, 3), then 𝜶 + 𝜷 +
𝜸 ≠ 𝟎 (𝑚𝑜𝑑3) for any triple of distinct points 𝜶, 𝜷, 𝜸 ∈ 𝑆. 

As in [9], let’s denote by 𝐵𝑛 = {(𝛼1, … , 𝛼𝑛) /𝛼𝑖 = 0,1} and

by 𝑃𝑛 the set of points of 𝐴𝐺(𝑛, 3) satisfying the following

two conditions: 

i) for any triple of  distinct points 𝜶, 𝜷, 𝜸 ∈ 𝑃𝑛,
𝜶 + 𝜷 + 𝜸 ≠ 𝟎(𝑚𝑜𝑑3), 

ii) for any two distinct points 𝜶, 𝜷 ∈ 𝑃𝑛, there

exists 𝑖 (1 ≤ 𝑖 ≤ 𝑛) such that 𝛼𝑖 = 𝛽𝑖 = 2.

We call 𝑃𝑛 to be complete when it cannot be extended to a

larger one.  

We will define the concatenation of the points in the 

following way. Let 𝐴 ⊂ 𝐴𝐺(𝑛, 3) and 𝐵 ⊂ 𝐴𝐺(𝑚, 3). We 

form a new set  𝐴𝐵 ⊂ 𝐴𝐺(𝑛 + 𝑚, 3) consisting of all points 

𝜶 = (𝛼1, … , 𝛼𝑛, 𝛼𝑛+1, … , 𝛼𝑛+𝑚), where 𝜶′ = (𝛼1, … , 𝛼𝑛) ∈
𝐴 and 𝜶′′ = (𝛼𝑛+1, … , 𝛼𝑛+𝑚) ∈ 𝐵. In a similar way one can

define the concatenation of the points of three sets, four 

sets,…etc. Note that if 𝑥, 𝑦, 𝑧 ∈ 𝐹3, then 𝑥 + 𝑦 + 𝑧 ≡
0 (𝑚𝑜𝑑3) if and only if 𝑥 = 𝑦 = 𝑧 or they are pairwise 

distinct.  

It is obvious that 𝑃1 = {2} and 𝑃2 = {(2, 0), (2, 1)} or 𝑃2 =
{(0, 2), (1, 2)} and they are complete. Presenting the natural 

numbers as the sum of three (six) natural numbers and 

applying Theorem 1 (Theorem 2), one can obtain complete 

𝑃𝑛 sets for each n.

Theorem 1. The following recurrence relation 

 𝑃𝑛 =  𝑃𝑛1
𝑃𝑛2

𝐵𝑛3
∪ 𝑃𝑛1

𝐵𝑛2
𝑃𝑛3

∪ 𝐵𝑛1
𝑃𝑛2

𝑃𝑛3
, with initial sets

𝑃1 = {2}, 𝑃2 = {(2, 0), (2, 1)} or 𝑃2 = {(0, 2), (1, 2)} and

𝑛 = 𝑛1 +𝑛2 + 𝑛3, yields complete sets.

Let’s form the following ten sets: 

𝐴1 = 𝑃𝑛1
𝑃𝑛2

𝐵𝑛3
𝐵𝑛4

𝐵𝑛5
𝑃𝑛6

,  𝐴2 = 𝐵𝑛1
𝑃𝑛2

𝑃𝑛3
𝑃𝑛4

𝐵𝑛5
𝐵𝑛6

𝐴3 = 𝑃𝑛1
𝐵𝑛2

𝑃𝑛3
𝐵𝑛4

𝑃𝑛5
𝐵𝑛6

,  𝐴4 = 𝐵𝑛1
𝐵𝑛2

𝑃𝑛3
𝑃𝑛4

𝐵𝑛5
𝑃𝑛6

𝐴5 = 𝐵𝑛1
𝐵𝑛2

𝑃𝑛3
𝐵𝑛4

𝑃𝑛5
𝑃𝑛6

,  𝐴6 = 𝐵𝑛1
𝑃𝑛2

𝐵𝑛3
𝑃𝑛4

𝑃𝑛5
𝐵𝑛6

𝐴7 = 𝐵𝑛1
𝑃𝑛2

𝐵𝑛3
𝐵𝑛4

𝑃𝑛5
𝑃𝑛6

,  𝐴8 = 𝑃𝑛1
𝐵𝑛2

𝐵𝑛3
𝑃𝑛4

𝑃𝑛5
𝐵𝑛6

𝐴9 = 𝑃𝑛1
𝐵𝑛2

𝐵𝑛3
𝑃𝑛4

𝐵𝑛5
𝑃𝑛6

, 𝐴10 = 𝑃𝑛1
𝑃𝑛2

𝑃𝑛3
𝐵𝑛4

𝐵𝑛5
𝐵𝑛6

.

Theorem 2. The following recurrence relation  

𝑃𝑛 = ⋃ 𝐴𝑖
10
𝑖=1 , with initial sets 𝑃1 = {2}, 𝑃2 = {(2, 0), (2, 1)}

or 𝑃2 = {(0, 2), (1, 2)} and 𝑛 = 𝑛1 +𝑛2 + 𝑛3 + 𝑛4 + 𝑛5 +
𝑛6, yields complete 𝑃𝑛 sets.

Note that the cardinality of 𝑃𝑛, obtained by Theorem 1

(Theorem 2), essentially depends on the representation of  𝑛 

as the sum of three (six) natural numbers. Presenting the 

natural numbers as the sum of six natural numbers and 

applying Theorem 2, for some 𝑛 ≥ 6 one can obtain larger 

complete 𝑃𝑛 sets than those, which are constructed by

Theorem 1. 

Theorem 3. If 𝑃𝑛 and 𝑃𝑚 are complete sets constructed by

Theorem 1 or Theorem 2, then 𝑃𝑛𝐵𝑚 ∪ 𝐵𝑛𝑃𝑚 is a complete

cap. 

Theorem 4. If 𝑃𝑖 and 𝑃𝑛−𝑖  are complete sets (1 ≤ 𝑖 ≤ 𝑛 −
1) constructed by Theorem 1 or Theorem 2, then 𝑃𝑖𝑃𝑛−𝑖 ∪
𝑃𝑖𝐵𝑛−𝑖 ∪ 𝐵𝑖𝑃𝑛−𝑖 ∪ 𝐵𝑛 is a complete cap.
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