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ABSTRACT
The paper is devoted to the use of the notion of a com-
mon up to the names of arguments sub-formula of two
elementary conjunctions of predicate atomic formulas.
It allows to construct a level description of a set of goal
formulas and to decrease the number of proof steps for
one of NP-complete problems. Logic-predicate networks
which may change its configuration (the number of lay-
ers and the number of cells in the layer) during the
process of training are described. The problem of multi-
agent description when every agent can describe only a
part of an object (these parts are intersected) but every
agent gives its own names to the elements of the whole
object may be solved with the use of the notion of such
a common sub-formula.
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1. INTRODUCTION
In the 70-th of the XX century many authors (see for
example [2]) offered to use predicate calculus and auto-
matic proof of a theorem for AI problems solving. Until
the notion of NP-complete problem (in particular, de-
scribed in [1]) was not widely adopted, such an approach
seemed to be very convenient.

In 2007 the author proved NP-completeness of a series
of AI problems formalized with the help of predicate
calculus formulas [3], proved upper bounds for number
of steps of algorithms solving these problems [6], and
offered a level description of goal formulas for decreasing
the number of proof steps [4]. Such a level description is
based on the extraction of a common up to the names
of its arguments sub-formula of the set of elementary
conjunctions of atomic predicate formulas. These sub-
formulas define generalized characteristics of an object.

Extraction of such sub-formulas allows to construct logic-
predicate networks [7] which may change its configura-
tion (the number of layers and the number of cells in
the layer) during the process of training.

Also extraction of these sub-formulas may be an instru-
ment for solving a multi-agent description problem solv-
ing when every agent can describe only a part of an ob-
ject (these parts are intersected) but every agent gives

its own names to the elements of the whole object [8].

2. LOGIC-PREDICATE APPROACH TO
AI PROBLEMS

Let an investigated object be represented as a set of
its elements ω = {ω1, . . . , ωt} and be characterized by
predicates p1, . . . , pn which define some properties of the
elements or relations between them. The description
S(ω1, . . . , ωt) of the object ω is a set of all constant
literals with predicates p1, . . . , pn which are valid on
ω. There is a set of goal formulas A1(x1, . . . , xm1), . . . ,
AK(x1, . . . , xmK ) in the form of elementary conjunc-
tions.

The solution of many Artificial Intelligence problems
may be reduced to the proof of a series of formulas (for
k = 1, . . . ,K) in the form

S(ω)⇒ ∃(x1, . . . , xmk ) 6= Ak(x1, . . . , xmk ).1 (1)

The verification problem of such a formula is NP-comp-
lete [3]. The upper bound of number of steps for an
exhaustive algorithm [6] is

O(tmk ).

The upper bound of the number of steps for an algo-
rithm based on the derivation in sequential calculus or
on the use of resolution method [6] is

O(sk
ak ),

where sk is the maximal number of atomic formulas
in S(ω) with the same predicate symbol having occur-
rences in Ak(x1, . . . , xm), ak is the number of atomic
formulas in the elementary conjunction Ak(x1, . . . , xm)
[6].

Note that both a logical algorithm and an exhaustive
algorithm allow not only to prove that there exist val-
ues for variables satisfying the formula Ak(x1, . . . , xm)
but to find these values. So an algorithm verifying the
formula (1) allows to solve the problem ”what are the
different values of x1, . . . , xm from ω that satisfy the
formula Ak(x1, . . . , xm)

S(ω)⇒?(x1, . . . , xm)6=Ak(x1, . . . , xm). (2)

This problem is NP-hard and its solving algorithms have
the same upper bounds as for the problem (1).

1The notation ∃(x1, . . . , xm) 6= P is used for the formula
∃x1, . . . , xm(&m−1

i=1 &m
j=i+1 xi 6= xj & P ).



3. COMMON UP TO THE NAMES OF
ARGUMENT SUB-FORMULA

Definition 1. Elementary conjunctions P and Q are
called isomorphic if there is an elementary conjunction
R and substitutions λR,P and λR,Q of the arguments of
P and Q, respectively, instead of the variables in R such
that the results of these substitutions coincide up to the
order of literals.

The substitutions λR,P and λR,Q are called unifiers of
R with P and Q, respectively.

Definition 2. Elementary conjunction C is called a
common up to the names of arguments sub-formula of
two elementary conjunctions A and B if it is isomor-
phic to some sub-formulas A′ and B′ of A and B, re-
spectively.

For example, let A(x, y, z) = p1(x)&p1(y)&
p1(z)&p2(x, y)&p3(x, z), B(x, y, z) = p1(x)&p1(y)&
p1(z)&p2(x, z)&p3(x, z). If the formula P (u, v) =
p1(u)&p1(v)&p2(u, v) is their common sub-formula?
Is the formula P (u, v) their common up to the
names of variables sub-formula with the unifiers
λP,A = |u v

x y and λP,B = |u v
x z because P (x, y)

= p1(x)&p1(y)&p2(x, y) is a sub-formula of A(x, y, z)
and P (x, z) = p1(x)&p1(z)&p2(x, z) is a sub-formula of
B(x, y, z).

An algorithm of extraction of a maximal (having a max-
imal number of literals) common up to the names of ar-
guments sub-formula C of two elementary conjunctions
A and B and determining the unifiers λC,A′ and λC,B′ is
described in [9]. The number of steps of this algorithm

is O(NNA
A NNB

B ), where NA and NB are the numbers of
literals in A and B respectively. The minimal number
of steps of this algorithm is O((NANB)2), the middle

estimate is O((NANB)1/2 log(NANB)).

4. LEVEL DESCRIPTION
Level description of goal formulas allows essentially to
decrease the number of steps for an algorithm solving
the problems (1) and (2). This notion is based on the
extraction of common up to the names of arguments
sub-formulas P 1

i (y1i ) (i = 1, . . . , n1) of goal formulas
Ak(x1, . . . , xm) (k = 1, . . . ,K) with ”small complex-
ity”. Simultaneously we find unifiers of P 1

i (y1i ) and sub-
formulas of Ak(x1, . . . , xm).

ALk (xL)

p11(y11) ⇔ P 1
1 (y11)

...
p1n1

(y1n1
) ⇔ P 1

n1
(y1n1

)
...

pli(y
l
i) ⇔ P li (y

l
i)

...
pLnL

(yLnL
) ⇔ PLnL

(yLnL
)

. (3)

Introduce new first-level predicates p1i with new first-
level arguments y1i for lists of initial variables defined
by the equivalences p1i (y

1
i ) ⇔ P 1

i (y1i ). Change in
Ak(x1, . . . , xm) every occurrence of sub-formula isomor-
phic to P 1

i (y1i ) by p1i (y
1
i ). The obtained formulas de-

note by A1
1(x11), ..., A1

K(x1K), where x1k is the list of ini-
tial variables (may be not all) and the first-level vari-
ables. Repeat this procedure with Al1(xl1), . . . , AlK(xlK)
for l = 1, . . . , L and obtain an L-level description (3).

The solution of the problem in the form (1) with the use
of a level description is decomposed on the sequential
(l = 1, . . . , L) implementation of the items 1 and 2.

1. For every i (i = 1, . . . , nl) check2 Sl−1(ω) ⇒
∃y1j 6=P

1
j (y1j ) and find all lists τ lj of previous levels con-

stants for the values of the variable list y1j such that

Sl−1(ω)⇒ P 1
j (τ1j );

2. Add all constant atomic l-level formulas in the form
plj(τ

l
j) (τ lj were received in the first item) to Sl−1(ω)

and obtain Sl(ω).

At last check SL(a1, . . . , at)⇒ ∃xLk 6=A
L
k (yLk ).

Such a description allows essentially to decrease the
number of steps needed for solving the problem (1) or
(2) even with the use of only first-level predicates.

Number of steps for an exhaustive algorithm decreases

from O(tmk ) to O(n1 ·tr+tδ
1
k
+n1), where r is a maximal

number of arguments in the 1-st level predicates, n1 is
the number of such predicates, δ1k is the number of initial
variables which are presented in Ak(xk) and are absent
in A1

k(x1k). Number of steps for an algorithm based on
the derivation in sequential calculus or on the use of

resolution method decreases from O(sk
ak ) to O(s1

a1
k +∑n1

j=1
sρ

1
j ), where ak and a1k are maximal numbers of

literals in Ak(xk) and A1
k(x1k), respectively, s s1 are the

numbers of literals in S(ω) and S1(ω), respectively, ρ1j
is the numbers of literals in P 1

i (y1i ).

4.1 Construction of a level description
Algorithm for extraction of a maximal common up to
the names of arguments sub-formula C of two elemen-
tary conjunctions A and B and determining the uni-
fiers λC,A′ and λC,B′ allows to construct a level descrip-
tion for a set of goal elementary conjunctions. Essential
difference between maximal common sub-formulas and
sub-formulas in the level description consists in the fact
that in the level description it is needed to extract sub-
formulas with ”small complexity” but not a maximal
one.

1. For every pair of elementary conjunctions Ai(xi) and
Aj(xj) extract their maximal common up to the names

of arguments sub-formula Q1
ij(x

1
ij) and find their uni-

fiers.

l (l = 2, . . . , L′).3 For every pair of not iso-
morphic elementary conjunctions Ql−1

i1...i2l−1
(xi1...i2l−1 )

and Ql−1
j1...j2l−1

(xj1...j2l−1 ) extract their maximal com-

mon up to the names of arguments sub-formula
Qli1...i2l−1 j1...j2l−1

(xi1...i2l−1 j1...j2l−1 ) and find their uni-

fiers.

L′+l (l = 1, . . . , L−1). Among all the remained (among

2S0(ω) = S(ω)
3The number L′ is finite as for every l the length of the
extracted sub-formula decreases.



all for l = 1) extracted sub-formulas find such that has
no extracted sub-formulas and denote them by means

of P li (y
l
i) (i = 1, . . . , nl). Substitute the l-level atomic

formulas pli(y
l
i) defined by the equalities pli(y

l
i)⇔ P li (y

l
i)

instead of P li (y
l
i) into the extracted sub-formulas and

into Al−1
k (xl−1) and rewrite all unifiers for the l-level

variables. Delete formulas P li (y
l
i) from the set of the

extracted formulas.

Let N be the maximal number of literals in Ak(xk) (k =
1, . . . ,K). The upper bound of this algorithm number
of steps is the following.

The extraction maximal common up to the names of ar-
guments sub-formula for one pair of formulas and find-
ing their unifiers in the item 1 requires O(NNNN ) =

O(N2N ) steps. Item 1 requires O(K(K+1)
2

N2N ) steps.

Item l (l = 2, . . . , L′) requires (in practice essentially

less) O(nl(nl+1)
2

(N − l+ 1)2(N−l+1)) steps. The sum of

these numbers is O(K(K+1)
2

N2N+1).

Items L′+ l (l = 1, . . . , L− 1) require more less number
of steps.

5. LOGIC-PREDICATE NETWORK
A logic-predicate network consists of two blocks: a
training block and a recognition block. Let a training
set of objects ω1, . . . , ωK be given to form an initial vari-
ant of the network training block. Replace every con-
stant ωkj in S(ωk) by a variable xkj (k = 1, . . . ,K, j =

1, . . . , tk) and substitute the sign & between the atomic
formulas. Initial goal formulas A1(x1), . . . , AK(xK) are
obtained. Construct a level description for these goal
formulas. The first approximation to the recognition
block is formed.

If after the recognition block run an object is not rec-
ognized nor has wrong identification then it is pos-
sible to train anew the network. The description of
the wrong object must be added to the input set of
the training block. The training block extracts com-
mon sub-formulas of this description and previously re-
ceived formulas forming the recognition block. Some
sub-formulas in the level description would be changed.
Then the recognition block is reconstructed. The
scheme of the network is presented in Figure 1.

6. MULTI-AGENT DESCRIPTION OF
AN OBJECT

Let an investigated object be represented as a set of
its elements ω = {ω1, . . . , ωt} and is characterized by
predicates p1, . . . , pn, each of which is defined on the
elements of ω and gives properties of these elements
and relations between them. Information (description)
I(ω1, . . . , ωt) of an object ω is an elementary conjunc-
tion of atomic formulas with predicates p1, . . . , pn and
arguments from ω. There arem agents a1, . . . , am which
can detect some values for some predicates of some ele-
ments of ω. The agent aj does not know the true num-
ber of the elements in ω and suppose that it deals with
the object ωj = {ωj1, . . . , ω

j

tj
}. That is the agent aj has

the information Ij(ωj1, . . . , ω
j

tj
) in the form of elemen-

tary conjunction of atomic formulas. It is required to
construct the description I(ω1, . . . , ωt) of ω.
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Figure 1. The scheme of logic-predicate network.

As every agent uses its own notifications for the names
of the object elements, it is needed to find all common
up to the names of arguments sub-formulas Cij of the
informations Ii(ωi1, . . . , ω

j

ti
) and Ij(ωj1, . . . , ω

j

tj
) (i 6= j)

and their unifiers.

6.1 Algorithm of multi-agent description
In this subsection the arguments of informations will be
omitted. Let every agent aj have information Ij about
the described object ω (j = 1, . . . ,m). To construct a
description of ω the following algorithm is offered.

1. Change all constants in I1, . . . , Im by variables in
such a way that different constants are changed by dif-
ferent variables and the names of variables in Ii and Ij

(i 6= j) do not coincide. Obtain I ′1, . . . , I
′
m.

2. For every pair of elementary conjunctions I ′i and I ′j
(i = 1, . . . ,m − 1, j = i + 1, . . . ,m) find a maximal
common up to the names of variables of I ′i and I ′j sub-
formula Cij and unifiers λi,ij and λj,ij . Every argument
of Cij has a unique name.

3. For every pair i and j (i > j) check if I ′i and I ′j con-
tain a contradictory pair of atomic formulas or two sub-
formulas which cannot be satisfiable simultaneously. If
such a contradiction is established then delete from Cij
atomic formulas containing the variables which are in
the contradictory sub-formulas. Change the unifiers by
means of elimination of these variables.

4. For every i identify the variables in Cij (i 6= j) which
are substituted in I ′i and I ′j instead of the same variable.
The names of the identified variables are changed in
unifiers by the same name.
5. With the use of the unifiers obtained in items 2 –
4 change the names of variables in I ′1, . . . , I

′
m. Obtain

I ′′1 , . . . , I
′′
m.



6. Write down the conjunction I ′′1 & . . .& I ′′m and delete
the repeating atomic formulas.

6.2 Upper bound of the number of steps
To estimate the number of the algorithm run steps we
estimate every item of the algorithm.

1. Item 1 requires not more than
∑m

j=1
||Ij || ”steps”.

2. Item 2 requires O(ti
tj · 2||Ii||) ”steps” for an ex-

haustive algorithm and O(si
||Ij || · ||Ii||3) ”steps” for

an algorithm based on the derivation in the predicate
calculus4. It is needed to summarize the above esti-
mates for i = 1, ...,m1, j = i + 1, ...,m. So we have
O(tt · ||I|| ·m2) ”steps” for an exhaustive algorithm and

O(s||I|| · ||I||3 · m2) ”steps” for an algorithm based on
the derivation in the predicate calculus. Here t and ||I||
are respectively the maximal numbers of variables and
atomic formulas in Ij (j = 1, ...,m).

3. Consistency checking of the formula I ′i requires
||Ii|| ”steps”. This item of the algorithm requires not
more than

∑m

i=1
(m− i)||Ii|| ”steps” that is O(m2||I||)

”steps”.

4. For every i identifying of the variables in Cij (j > i)
consists in the comparison of the replaced parts of the
unifiers. It requires not more than (m − i)ti ”steps”.
Summarizing it for i = 1, ,m we have not more than∑m

i=1
(m− i)ti = O(m2t) ”steps”.

5. The number of ”steps” required for changing of
the names of variables in I1, · · · , Im is linear under∑m

j=1
||Ij || = O(m||I||).

6. The number of ”steps” required for deleting
of the repeated conjunctive terms is not more than∑m−1

i=1

∑m

j=i+1
||Ii|| · ||Ij ||O(m2||I||2).

The number of the algorithm run ”steps” is O(tt · ||I|| ·
m2) for an exhaustive algorithm and O(s||I|| · ||I||3 ·m2)
for an algorithm based on the derivation in the predicate
calculus. The analysis of the received estimation shows
that the main contribution to it is made by the summa-
rized number of maximal common up to the names of
variables sub-formulas extractions (item 2).

7. CONCLUSION
Applications of the notion of a common up to the names
of arguments sub-formula of two elementary conjunc-
tions of predicate formulas are described in the paper.
This notion allows to construct algorithms for solving
a series of AI problems. In particular, it is possible
essentially to decrease the number of steps of the NP-
complete problem (1) by means of a level description
construction if we deal with the fixed set of goal formu-
las.

The level description gives the possibility to create a
self-training logic-predicate network with predicate for-
mulas in the cells. Very interesting is the possibility
of a weighted predicates and variables use. Probably
these weights must vary in dependence of ”valid” or
”wrong” recognition as it is usual for traditional neuron

4i and j may be chosen in such a way that tj ≤ ti and
||Ij || ≤ si

networks.

An algorithm solving a rather complicated problem of
multi-agent description of a complex object in terms
of predicate calculus language with the condition that
different agents may give different names to the same
elements of the object is presented in the paper.

For every algorithm upper bound of the step numbers
is received. The analysis of these estimations allows to
formulate restrictions upon the initial predicates for de-
creasing the practical time of the algorithm run. For
example, if we deal with a great number of initial pred-
icates each of which has very amount of occurrences in
the object description then the practical time of the al-
gorithm run decreases.
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