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ABSTRACT
An edge-coloring of a graph is an assignment of col-
ors to edges of the graph, so that adjacent edges re-
ceive different colors. A subgraph H of a graph G is
maximum k-edge-colorable, if H is k-edge-colorable and
contains as many edges as possible. In this paper, we
present some results towards the problem of finding a

tight lower bound for |E(H)|
|E(G)| , where H is a maximum

k-edge-colorable subgraph of G, and G is an arbitrary
or an regular graph.
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1. INTRODUCTION

The classical edge coloring problem is frequently
used to model real-world problems of resource alloca-
tion, such as scheduling of tasks requiring the coopera-
tion of two processors, file transfer operations, and as-
signment of channels of satellite communication.

For any positive integer k there are graphs that
do not admit an edge-coloring with k colors. Thus, an
interesting problem is to find the maximum number of
edges we can color the given k colors.

In this paper, we consider finite, undirected graphs
with no loops. Graphs may contain parallel edges. For
a graph G, let V (G) denote its vertex set and E(G) its
edge set. The degree of a vertex v of G, denoted by
dG(v), is the number of edges of G that are incident to
v. A graph is r-regular if dG(v) = r for all v ∈ V (G).
The maximum of dG(v) over all v ∈ V (G) is called a
maximum degree of G and is denoted by ∆(G). For a
vertex v of G let ∂G(v) be the set of edges of G incident
to v. The girth of a graph is the length of a shortest
cycle of the graph.

A matching M in G is a set of pairwise non-adjacent
edges, that is, a subset of edges, where no two edges
share a common vertex. A k-factor of a graph G is a
spanning k-regular subgraph of G. Thus, the edge-set
of a 1-factor is a perfect matching.

A k-edge coloring of a graph G is an assignment of k
colors to the edges of G, so that adjacent edges receive
different colors. A k-edge coloring can be thought of as

a partition (E1, E2, ..., Ek) of E(G), where Ei denotes
the subset of E(G) having color i. It is not hard to see
that a k-edge coloring is just a partition (E1, E2, ..., Ek),
in which each subset Ei is a matching [9].

The least number k for which G has a k-edge coloring is
called a chromatic index of G and is denoted by χ′(G).
The graphs G with χ′(G) = ∆(G) are said to be class
I, otherwise they are class II. Shannon’s theorem says

that for any G graph ∆(G) ≤ χ′(G) ≤
⌊

3∆(G)
2

⌋
and

Vizing’s theorem states that for any G graph ∆(G) ≤
χ′(G) ≤ ∆(G) + µ(G) where the µ(G) is the maximum
multiplicity of an edge in G.

For a graph G and a positive integer k, a subgraph H
of G is called maximum k-edge colorable if it is k-edge-
colorable and contains as many edges as possible. The
number of edges of H is denoted by νk(G). The maxi-
mum k-edge-coloring subgraph problem is the following:
for a given graph G find a maximum size subgraph H
of G, which is k-edge-colorable. In other words, in this
problem we are looking for a k-edge-colorable subgraph
containing νk(G) edges.

There are several papers where the ratio |E(H)|
|E(G)| has been

investigated. In [8], an algorithm for the problem is pre-
sented. There for each fixed value of k ≥ 2, a polyno-
mial time approximation algorithm is described, where
the approximation ratios are tending to 1 as k tends to
infinity. In [1], it is shown that any 2-factor of a cubic
graph can be extended to a maximum 3-edge colorable
subgraph. Also the authors proved that for every cubic
graph G

ν2(G) ≥ 4

5
|V (G)| and ν3(G) ≥ 7

6
|V (G)|.

Moreover, it can be shown that

ν2(G) + ν3(G) ≥ 2|V (G)|,

and

ν2(G) ≤ |V (G)|+ 2ν3(G)

4

The last equality has been investigated in [5]. There, it
is shown that

ν2(G) ≥ α · |V (G)|+ 2ν3(G)

4

where α = 16
17

, if G is a cubic graph, α = 20
21

if G is a

cubic graph containing a perfect matching and α = 44
45

if
G is a bridgeless cubic graph. There, also the improved
lower bounds of ν2(G) and ν3(G) are proved when G is
a claw-free bridgeless cubic graph:

ν2(G) ≥ 35

36
· |V (G)|, ν3(G) ≥ 43

45
· |E(G)|.



There are some results in [10] about maximum ∆-edge
colorable subgraph of class II graphs. There, the au-
thors proved that every set of disjoint cycles of a class
II graph with ∆ ≥ 3 can be extended to a maximum ∆-
edge colorable subgraph. It is also shown there that a
maximum ∆-edge colorable subgraph of a simple graph
is always class I. Finally, if G is a graph with girth
g ∈ {2k, 2k + 1} (k ≥ 1) and H is a maximum ∆-edge
colorable subgraph of G, then

|E(H)|
|E(G)| ≥

2k

2k + 1

and the bound is best possible in a sense that there is
an example attaining it.

Finally, let us note that the lower bounds for νk(G)
|V (G)| in

cubic graphs have been investigated in [2, 6, 11, 12, 14]
when k = 1, and for regular graphs of high girth in [3].
These lower bounds have also been investigated in the
case when the graphs need not be cubic [4, 7, 13].

In this paper, we prove a best-possible bound for |E(H)|
|E(G)|

in the class of all graphs. We also investigate the same
problem in the class of regular graphs and present some
partial results in relation to them. Non-defined terms
and concepts can be found in [9].

2. RESULTS

In this section, we present our main results. First, we
consider the following problem in the class of all graphs.

Problem 1. For ∆ ≥ 1 and k = 1, ...,
[

3∆
2

]
define

the function g(∆, k) as the infimum of |E(Hk)|
|E(G)| , where

G is any graph and Hk is a maximum k-edge-colorable
subgraph of G. The infimum is taken over all graphs G
of maximum degree ∆. The problem is to determine the
function g.

Our first result states:

Theorem 1. For ∆ ≥ 1 and k = 1, ...,
[

3∆
2

]
, we have

g(∆, k) = k

b 3∆
2 c

.

Proof. First let us show that g(∆, k) ≤ k

b 3∆
2 c

. Con-

sider a graph G on three vertices a, b and c, where a
and b are joined with

⌊
∆
2

⌋
edges, a and c are joined with⌊

∆
2

⌋
edges, and b and c are joined with

⌈
∆
2

⌉
edges. It

can be easily seen that |E(Hk)|
|E(G)| = k

b 3∆
2 c

.

In order to prove the opposite inequality, let G be any
graph with maximum degree ∆. From Shannon theorem
we have χ′(G) ≤ [ 3∆

2
], thus, to prove the theorem it’s

enough to prove that νk(G) ≥ k
χ′(G)

· |E(G)|. It will be

proved using the following proposition:

Proposition 1. Let a1 ≥ ... ≥ an be any positive
numbers and let k ≤ n. Then the arithmetical mean
of the a1, ..., ak is not less than the arithmetical mean of
a1, ..., an.

Consider an edge-coloring of G with n = χ′(G) colors.
Let a1, ..., an be the sizes of the color classes. We can
assume that a1 ≥ ... ≥ an. By Proposition 1, we have

νk(G)

k
≥ a1 + ...+ ak

k
≥ a1 + ...+ an

n
=
|E(G)|
χ′(G)

,

which proves the theorem.

The second problem that we considered is the following:

Problem 2. For r ≥ 3 and k = 1, ...,
[

3r
2

]
define the

function f(r, k) as the infimum of |E(Hk)|
|E(G)| , where G

is any r-regular graph and Hk is a maximum k-edge-
colorable subgraph of G. The infimum is taken over all
r-regular graphs G. The problem is to determine the
function f .

We suspect that:

Conjecture 1. For r ≥ 3 and k = 1, ...,
[

3r
2

]
one has:

f(r, k) =


2k
3r
, if r is even;

2k(r+1)
r(3r+1)

, if r is odd and k ≤ 3r+1
4

;
2k+1

3r
, if r is odd and k ≥ 3r+1

4
.

Note that if r is odd and k = 3r+1
4

, then the two ex-
pressions give the same value.

Related with this conjecture, we are able to show:

Theorem 2. Conjecture 1 is true when r is even, or
when r is odd and k = 1.

Proof. We start with the case when r is even. By
Theorem 1, we have f(r, k) ≥ 2k

3r
. On the other hand,

if we consider the same example from the proof of The-
orem 1 when ∆ = r, one can easily see that we get an
r-regular graph, hence the converse inequality is also
true. Thus, f(r, k) = 2k

3r
when r is even.

Now, let us consider the case when r is odd and k = 1.
Consider the following graphs Ar and Br. We make
Ar by taking r copies of the Shannon’s triangle (the
graph from the proof of Theorem 1 when ∆ = r), and
taking a new vertex z and joining it to r vertices that
are of degree r − 1, thus we get an r-regular graph and
Br by taking two copies of the Shannon’s triangle, and
joining the two vertices of degree r − 1 with an edge.
Again we get an r-regular graph. Now, it is a matter of
direct verification, that if k ≤ 3r+1

4
then Ar attains the

bound of the conjecture, while for k ≥ 3r+1
4

, Br attains
the bound of the conjecture. Thus, f(r, k) is at most
the bound predicted by the Conjecture 1, in particular,
when k = 1.

Now, let us show that f(r, 1) is at least the bound of the
Conjecture 1 when k = 1. Nishizeki in [11] has shown
that any odd r-regular graph G contains a matching of

size at least
⌈

(r2−r−1)|V |−(r−1)
r(3r−5)

⌉
. Now it can be shown

that this expression is at least r+1
3r+1

· |V (G)| = 2(r+1)
r(3r+1)

·
|E(G)|. Thus, f(r, 1) ≥ 2(r+1)

r(3r+1)
.



Finally, it turns out that there is a certain dependence
among different values of k in the Conjecture 1. More
precisely, we are able to show that

Theorem 3. If Conjecture 1 is true when r is odd and
k = b 3r+1

4
c, then it is true when r is odd and k =

1, ..., b 3r+1
4
c.

Proof. Assume that r is odd. Observe that for i =
1, ..., k, where k = b 3r+1

4
c, we have νi(G) ≥ i

k
· νk(G).

Hence, if Conjecture 1 is true when k = b 3r+1
4
c then it

is true for i = 1, ..., k.
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