On the Size of Maximum k-Edge-Colorable Subgraphs in
Regular Graphs

Angela, Markosyan

Teamable
St. Hakobyan 3/20, Yerevan, 0033, Armenia

e-mail: angelamarkosyan95 @gmail.com

ABSTRACT

An edge-coloring of a graph is an assignment of col-
ors to edges of the graph, so that adjacent edges re-
ceive different colors. A subgraph H of a graph G is
maximum k-edge-colorable, if H is k-edge-colorable and
contains as many edges as possible. In this paper, we
present some results towards the problem of finding a

|E(H)|

tight lower bound for where H is a maximum

[E(G)]°
k-edge-colorable subgraph of GG, and G is an arbitrary
or an regular graph.
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1. INTRODUCTION

The classical edge coloring problem is frequently
used to model real-world problems of resource alloca-
tion, such as scheduling of tasks requiring the coopera-
tion of two processors, file transfer operations, and as-
signment of channels of satellite communication.

For any positive integer k there are graphs that
do not admit an edge-coloring with k colors. Thus, an
interesting problem is to find the maximum number of
edges we can color the given k colors.

In this paper, we consider finite, undirected graphs
with no loops. Graphs may contain parallel edges. For
a graph G, let V(G) denote its vertex set and E(G) its
edge set. The degree of a vertex v of G, denoted by
da(v), is the number of edges of G that are incident to
v. A graph is r-regular if dg(v) = r for all v € V(G).
The maximum of dg(v) over all v € V(G) is called a
maximum degree of G and is denoted by A(G). For a
vertex v of G let d¢(v) be the set of edges of G incident
to v. The girth of a graph is the length of a shortest
cycle of the graph.

A matching M in G is a set of pairwise non-adjacent
edges, that is, a subset of edges, where no two edges
share a common vertex. A k-factor of a graph G is a
spanning k-regular subgraph of G. Thus, the edge-set
of a 1-factor is a perfect matching.

A k-edge coloring of a graph G is an assignment of k
colors to the edges of G, so that adjacent edges receive
different colors. A k-edge coloring can be thought of as

a partition (E1, Es, ..., Ex) of E(G), where E; denotes
the subset of E(G) having color . It is not hard to see
that a k-edge coloring is just a partition (E1, Es, ..., Ex),
in which each subset FE; is a matching [9].

The least number k for which G has a k-edge coloring is
called a chromatic index of G and is denoted by x'(G).
The graphs G with x'(G) = A(G) are said to be class
I, otherwise they are class II. Shannon’s theorem says

that for any G graph A(G) < x'(G) < {%(G)J and
Vizing’s theorem states that for any G graph A(G) <
X' (G) < A(G) + u(G) where the p(G) is the maximum
multiplicity of an edge in G.

For a graph G and a positive integer k, a subgraph H
of GG is called maximum k-edge colorable if it is k-edge-
colorable and contains as many edges as possible. The
number of edges of H is denoted by vi(G). The maxi-
mum k-edge-coloring subgraph problem is the following:
for a given graph G find a maximum size subgraph H
of G, which is k-edge-colorable. In other words, in this
problem we are looking for a k-edge-colorable subgraph
containing v (G) edges.

|E(H)]|
[E(G)]
investigated. In [8], an algorithm for the problem is pre-
sented. There for each fixed value of £ > 2, a polyno-
mial time approximation algorithm is described, where
the approximation ratios are tending to 1 as k£ tends to
infinity. In [1], it is shown that any 2-factor of a cubic
graph can be extended to a maximum 3-edge colorable
subgraph. Also the authors proved that for every cubic
graph G

There are several papers where the ratio has been

Vs(G) > %|V(G)| and 13(G) > LV(@)].

[N

Moreover, it can be shown that
va(G) + (@) = 2|V(G)],

and

2

1n(6) < V(O +206)
The last equality has been investigated in [5]. There, it
is shown that
QU
12(G) > a- V(@] +2v5(G) Z vs(G)

16 - . . 20 - .
17, if G is a cubic graph, a = 57 if G is a
cubic graph containing a perfect matching and o = 42 if
G is a bridgeless cubic graph. There, also the improved
lower bounds of v2(G) and v3(G) are proved when G is
a claw-free bridgeless cubic graph:

where a =



There are some results in [10] about maximum A-edge
colorable subgraph of class II graphs. There, the au-
thors proved that every set of disjoint cycles of a class
II graph with A > 3 can be extended to a maximum A-
edge colorable subgraph. It is also shown there that a
maximum A-edge colorable subgraph of a simple graph
is always class 1. Finally, if G is a graph with girth
g € {2k,2k+ 1} (k > 1) and H is a maximum A-edge
colorable subgraph of GG, then

and the bound is best possible in a sense that there is
an example attaining it.

v (G)
[V(G)]

cubic graphs have been investigated in [2, 6, 11, 12, 14]
when k = 1, and for regular graphs of high girth in [3].
These lower bounds have also been investigated in the
case when the graphs need not be cubic [4, 7, 13].

Finally, let us note that the lower bounds for in

In this paper, we prove a best-possible bound for ‘Ig((g))l‘

in the class of all graphs. We also investigate the same
problem in the class of regular graphs and present some
partial results in relation to them. Non-defined terms
and concepts can be found in [9].

2. RESULTS

In this section, we present our main results. First, we
consider the following problem in the class of all graphs.

Problem 1. For A > 1 and k = 1,..., [%] define
the function g(A,k) as the infimum of |IEE({IG"')>“,
G is any graph and Hy is a mazimum k-edge-colorable
subgraph of G. The infimum is taken over all graphs G
of maximum degree A. The problem is to determine the
function g.

where

Our first result states:

Theorem 1. For A>1andk=1,..., [%], we have

g(A,k) = sz J

N‘D

Proof. First let us show that g(A, k) < L;“jj Con-
2

sider a graph G on three vertices a, b and ¢, where a
and b are joined with L%J edges, a and c are joined with
LAJ edges, and b and c are joined with (%W edges. It

2
: [E(H)| _ &
can be easily seen that BN

In order to prove the opposite inequality, let G be any
graph with maximum degree A. From Shannon theorem
we have x'(G) < [22], thus, to prove the theorem it’s
enough to prove that vgx(G) > % -|E(G)]. Tt will be
proved using the following proposition:

Proposition 1. Let a1 > ... > an be any positive
numbers and let k < n. Then the arithmetical mean
of the ax, ..., ax is not less than the arithmetical mean of
A1y ..y Qn .

Consider an edge-coloring of G with n = x'(G) colors.
Let a1, ...,a, be the sizes of the color classes. We can
assume that a1 > ... > an. By Proposition 1, we have

vi(G) suttaraitotan |E(G)|
E= k = n T X(G)

which proves the theorem. []
The second problem that we considered is the following:

Problem 2. Forr >3 and k =1, ..., [377”} define the
function f(r,k) as the infimum of ‘g(lg)i‘, where G
is any r-reqular graph and Hy is a mazimum k-edge-
colorable subgraph of G. The infimum is taken over all
r-regular graphs G. The problem is to determine the
function f.

We suspect that:

Conjecture 1. Forr >3 and k=1, ..., [3{] one has:

g—f, if r is even;
flr k) = zl(cé:jj% if v is odd and k < 2L
2’?[1, if r is odd and k > 3%“.

Note that if r is odd and k& = %, then the two ex-
pressions give the same value.

Related with this conjecture, we are able to show:

Theorem 2. Conjecture 1 is true when r is even, or
when 1 is odd and k = 1.

Proof. We start with the case when r is even. By

Theorem 1, we have f(r,k) > g—f On the other hand,
if we consider the same example from the proof of The-
orem 1 when A = r, one can easily see that we get an
r-regular graph, hence the converse inequality is also
true. Thus, f(r, k) = % when r is even.
Now, let us consider the case when r is odd and k = 1.
Consider the following graphs A, and B,. We make
A, by taking r copies of the Shannon’s triangle (the
graph from the proof of Theorem 1 when A = r), and
taking a new vertex z and joining it to r vertices that
are of degree r — 1, thus we get an r-regular graph and
B, by taking two copies of the Shannon’s triangle, and
joining the two vertices of degree r — 1 with an edge.
Again we get an r-regular graph. Now, it is a matter of
direct verification, that if &k < % then A, attains the
bound of the conjecture, while for k > 32*'17 B, attains
the bound of the conjecture. Thus, f(r, k) is at most
the bound predicted by the Conjecture 1, in particular,
when k = 1.

Now, let us show that f(r, 1) is at least the bound of the
Conjecture 1 when k = 1. Nishizeki in [11] has shown
that any odd r-regular graph G contains a matching of
(r2—r=1)|V|—(r—1)
r(3r—>5)

that this expression is at least 74 - [V(G)| = fg;ll)) .

2(r+1)
|E(G)|. Thus, f(r,1) > TG O

size at least [ 1 Now it can be shown




Finally, it turns out that there is a certain dependence
among different values of k in the Conjecture 1. More
precisely, we are able to show that

Theorem 3. If Conjecture 1 is true when r is odd and
k = |22, then it is true when v is odd and k =
I

Proof. Assume that r is odd. Observe that for i =
1,...,k, where k = |25 | we have v;(G) > £ - vi(G).
Hence, if Conjecture 1 is true when k = |22t | then it
istrue fori =1,.... k. [
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