On the Size of Maximum k-Edge-Colorable Subgraphs in Regular Graphs

Angela, Markosyan

Teamable St. Hakobyan 3/20, Yerevan, 0033, Armenia e-mail: angelamarkosyan95@gmail.com

ABSTRACT

An edge-coloring of a graph is an assignment of colors to edges of the graph, so that adjacent edges receive different colors. A subgraph H of a graph G is maximum k-edge-colorable, if H is k-edge-colorable and contains as many edges as possible. In this paper, we present some results towards the problem of finding a tight lower bound for $\frac{|E(H)|}{|E(G)|}$, where H is a maximum k-edge-colorable subgraph of G, and G is an arbitrary or an regular graph.

Keywords

Edge coloring, k-edge-coloring, k-edge colorable sub-graph, r-regular graph

1. INTRODUCTION

The classical edge coloring problem is frequently used to model real-world problems of resource allocation, such as scheduling of tasks requiring the cooperation of two processors, file transfer operations, and assignment of channels of satellite communication.

For any positive integer k there are graphs that do not admit an edge-coloring with k colors. Thus, an interesting problem is to find the maximum number of edges we can color the given k colors.

In this paper, we consider finite, undirected graphs with no loops. Graphs may contain parallel edges. For a graph G, let V(G) denote its vertex set and E(G) its edge set. The degree of a vertex v of G, denoted by $d_G(v)$, is the number of edges of G that are incident to v. A graph is r-regular if $d_G(v) = r$ for all $v \in V(G)$. The maximum of $d_G(v)$ over all $v \in V(G)$ is called a maximum degree of G and is denoted by $\Delta(G)$. For a vertex v of G let $\partial_G(v)$ be the set of edges of G incident to v. The girth of a graph is the length of a shortest cycle of the graph.

A matching M in G is a set of pairwise non-adjacent edges, that is, a subset of edges, where no two edges share a common vertex. A k-factor of a graph G is a spanning k-regular subgraph of G. Thus, the edge-set of a 1-factor is a perfect matching.

A k-edge coloring of a graph G is an assignment of k colors to the edges of G, so that adjacent edges receive different colors. A k-edge coloring can be thought of as

a partition $(E_1, E_2, ..., E_k)$ of E(G), where E_i denotes the subset of E(G) having color *i*. It is not hard to see that a *k*-edge coloring is just a partition $(E_1, E_2, ..., E_k)$, in which each subset E_i is a matching [9].

The least number k for which G has a k-edge coloring is called a chromatic index of G and is denoted by $\chi'(G)$. The graphs G with $\chi'(G) = \Delta(G)$ are said to be class I, otherwise they are class II. Shannon's theorem says that for any G graph $\Delta(G) \leq \chi'(G) \leq \left\lfloor \frac{3\Delta(G)}{2} \right\rfloor$ and Vizing's theorem states that for any G graph $\Delta(G) \leq \chi'(G) \leq \Delta(G) + \mu(G)$ where the $\mu(G)$ is the maximum multiplicity of an edge in G.

For a graph G and a positive integer k, a subgraph Hof G is called maximum k-edge colorable if it is k-edgecolorable and contains as many edges as possible. The number of edges of H is denoted by $\nu_k(G)$. The maximum k-edge-coloring subgraph problem is the following: for a given graph G find a maximum size subgraph Hof G, which is k-edge-colorable. In other words, in this problem we are looking for a k-edge-colorable subgraph containing $\nu_k(G)$ edges.

There are several papers where the ratio $\frac{|E(H)|}{|E(G)|}$ has been investigated. In [8], an algorithm for the problem is presented. There for each fixed value of $k \geq 2$, a polynomial time approximation algorithm is described, where the approximation ratios are tending to 1 as k tends to infinity. In [1], it is shown that any 2-factor of a cubic graph can be extended to a maximum 3-edge colorable subgraph. Also the authors proved that for every cubic graph G

$$\nu_2(G) \ge \frac{4}{5}|V(G)|$$
 and $\nu_3(G) \ge \frac{7}{6}|V(G)|.$

Moreover, it can be shown that

$$\nu_2(G) + \nu_3(G) \ge 2|V(G)|,$$

and

$$\nu_2(G) \le \frac{|V(G)| + 2\nu_3(G)}{4}$$

The last equality has been investigated in [5]. There, it is shown that

$$\nu_2(G) \ge \alpha \cdot \frac{|V(G)| + 2\nu_3(G)}{4}$$

where $\alpha = \frac{16}{17}$, if G is a cubic graph, $\alpha = \frac{20}{21}$ if G is a cubic graph containing a perfect matching and $\alpha = \frac{44}{45}$ if G is a bridgeless cubic graph. There, also the improved lower bounds of $\nu_2(G)$ and $\nu_3(G)$ are proved when G is a claw-free bridgeless cubic graph:

$$\nu_2(G) \ge \frac{35}{36} \cdot |V(G)|, \nu_3(G) \ge \frac{43}{45} \cdot |E(G)|$$

There are some results in [10] about maximum Δ -edge colorable subgraph of class II graphs. There, the authors proved that every set of disjoint cycles of a class II graph with $\Delta \geq 3$ can be extended to a maximum Δ -edge colorable subgraph. It is also shown there that a maximum Δ -edge colorable subgraph of a simple graph is always class I. Finally, if G is a graph with girth $g \in \{2k, 2k+1\}$ $(k \geq 1)$ and H is a maximum Δ -edge colorable subgraph of G, then

$$\frac{|E(H)|}{|E(G)|} \ge \frac{2k}{2k+1}$$

and the bound is best possible in a sense that there is an example attaining it.

Finally, let us note that the lower bounds for $\frac{\nu_k(G)}{|V(G)|}$ in cubic graphs have been investigated in [2, 6, 11, 12, 14] when k = 1, and for regular graphs of high girth in [3]. These lower bounds have also been investigated in the case when the graphs need not be cubic [4, 7, 13].

In this paper, we prove a best-possible bound for $\frac{|E(H)|}{|E(G)|}$ in the class of all graphs. We also investigate the same problem in the class of regular graphs and present some partial results in relation to them. Non-defined terms and concepts can be found in [9].

2. RESULTS

In this section, we present our main results. First, we consider the following problem in the class of all graphs.

Problem 1. For $\Delta \geq 1$ and $k = 1, ..., \begin{bmatrix} 3\Delta \\ 2 \end{bmatrix}$ define the function $g(\Delta, k)$ as the infimum of $\frac{|E(H_k)|}{|E(G)|}$, where G is any graph and H_k is a maximum k-edge-colorable subgraph of G. The infimum is taken over all graphs G of maximum degree Δ . The problem is to determine the function g.

Our first result states:

Theorem 1. For $\Delta \ge 1$ and $k = 1, ..., \left\lfloor \frac{3\Delta}{2} \right\rfloor$, we have $g(\Delta, k) = \frac{k}{\lfloor \frac{3\Delta}{2} \rfloor}$.

Proof. First let us show that $g(\Delta, k) \leq \frac{k}{\lfloor \frac{3\Delta}{2} \rfloor}$. Consider a graph G on three vertices a, b and c, where a and b are joined with $\lfloor \frac{\Delta}{2} \rfloor$ edges, a and c are joined with $\lfloor \frac{\Delta}{2} \rfloor$ edges, and b and c are joined with $\lfloor \frac{\Delta}{2} \rfloor$ edges. It can be easily seen that $\frac{|E(H_k)|}{|E(G)|} = \frac{k}{\lfloor \frac{3\Delta}{2} \rfloor}$.

In order to prove the opposite inequality, let G be any graph with maximum degree Δ . From Shannon theorem we have $\chi'(G) \leq \left[\frac{3\Delta}{2}\right]$, thus, to prove the theorem it's enough to prove that $\nu_k(G) \geq \frac{k}{\chi'(G)} \cdot |E(G)|$. It will be proved using the following proposition:

Proposition 1. Let $a_1 \geq ... \geq a_n$ be any positive numbers and let $k \leq n$. Then the arithmetical mean of the $a_1, ..., a_k$ is not less than the arithmetical mean of $a_1, ..., a_n$. Consider an edge-coloring of G with $n = \chi'(G)$ colors. Let $a_1, ..., a_n$ be the sizes of the color classes. We can assume that $a_1 \ge ... \ge a_n$. By Proposition 1, we have

$$\frac{\nu_k(G)}{k} \ge \frac{a_1 + \dots + a_k}{k} \ge \frac{a_1 + \dots + a_n}{n} = \frac{|E(G)|}{\chi'(G)},$$

which proves the theorem. \Box

The second problem that we considered is the following:

Problem 2. For $r \geq 3$ and $k = 1, ..., \left[\frac{3r}{2}\right]$ define the function f(r,k) as the infimum of $\frac{|E(H_k)|}{|E(G)|}$, where G is any r-regular graph and H_k is a maximum k-edge-colorable subgraph of G. The infimum is taken over all r-regular graphs G. The problem is to determine the function f.

We suspect that:

Conjecture 1. For $r \ge 3$ and $k = 1, ..., \left[\frac{3r}{2}\right]$ one has:

$$f(r,k) = \begin{cases} \frac{2k}{3r}, & \text{if } r \text{ is even;} \\ \frac{2k(r+1)}{r(3r+1)}, & \text{if } r \text{ is odd and } k \le \frac{3r+1}{4}; \\ \frac{2k+1}{3r}, & \text{if } r \text{ is odd and } k \ge \frac{3r+1}{4}. \end{cases}$$

Note that if r is odd and $k = \frac{3r+1}{4}$, then the two expressions give the same value.

Related with this conjecture, we are able to show:

Theorem 2. Conjecture 1 is true when r is even, or when r is odd and k = 1.

Proof. We start with the case when r is even. By Theorem 1, we have $f(r,k) \geq \frac{2k}{3r}$. On the other hand, if we consider the same example from the proof of Theorem 1 when $\Delta = r$, one can easily see that we get an r-regular graph, hence the converse inequality is also true. Thus, $f(r,k) = \frac{2k}{3r}$ when r is even.

Now, let us consider the case when r is odd and k = 1. Consider the following graphs A_r and B_r . We make A_r by taking r copies of the Shannon's triangle (the graph from the proof of Theorem 1 when $\Delta = r$), and taking a new vertex z and joining it to r vertices that are of degree r - 1, thus we get an r-regular graph and B_r by taking two copies of the Shannon's triangle, and joining the two vertices of degree r - 1 with an edge. Again we get an r-regular graph. Now, it is a matter of direct verification, that if $k \leq \frac{3r+1}{4}$ then A_r attains the bound of the conjecture, while for $k \geq \frac{3r+1}{4}$, B_r attains the bound of the conjecture. Thus, f(r, k) is at most the bound predicted by the Conjecture 1, in particular, when k = 1.

Now, let us show that f(r, 1) is at least the bound of the Conjecture 1 when k = 1. Nishizeki in [11] has shown that any odd *r*-regular graph *G* contains a matching of size at least $\left\lceil \frac{(r^2 - r - 1)|V| - (r - 1)}{r(3r - 5)} \right\rceil$. Now it can be shown that this expression is at least $\frac{r+1}{3r+1} \cdot |V(G)| = \frac{2(r+1)}{r(3r+1)} \cdot |E(G)|$. Thus, $f(r, 1) \geq \frac{2(r+1)}{r(3r+1)}$. \Box

Finally, it turns out that there is a certain dependence among different values of k in the Conjecture 1. More precisely, we are able to show that

Theorem 3. If Conjecture 1 is true when r is odd and $k = \lfloor \frac{3r+1}{4} \rfloor$, then it is true when r is odd and $k = 1, ..., \lfloor \frac{3r+1}{4} \rfloor$.

Proof. Assume that r is odd. Observe that for i = 1, ..., k, where $k = \lfloor \frac{3r+1}{4} \rfloor$, we have $\nu_i(G) \ge \frac{i}{k} \cdot \nu_k(G)$. Hence, if Conjecture 1 is true when $k = \lfloor \frac{3r+1}{4} \rfloor$ then it is true for i = 1, ..., k. \Box

REFERENCES

- D. Aslanyan, V. V. Mkrtchyan, S. S. Petrosyan, G. N. Vardanyan, "On disjoint matchings in cubic graphs: maximum 2- and 3-edge-colorable subgraphs", *Discr. Appl. Math.* 172, pp. 12-27, 2014
- [2] B. Bollobas, "Extremal Graph Theory", Academic Press, London, New York, San Francisco, 1978.
- [3] A. D. Flaxman, S. Hoory, "Maximum matchings in regular graphs of high girth", *The Electronic Journal of Combinatorics* 14(1), pp. 1–4, 2007.
- [4] J.-L. Fouquet, J.-M. Vanherpe, "On parsimonious edge-colouring of graphs with maximum degree three", *Graphs and Combinatorics 29(3)*, pp. 475–487, 2013.
- [5] L. Hambardzumyan, V. Mkrtchyan, "Graphs, Disjoint Matchings and Some Inequalities", submitted (available at: https://arxiv.org/abs/1512.02546)
- [6] M. A. Henning, A. Yeo, "Tight lower bounds on the size of a maximum matching in a regular graph", *Graphs and Combinatorics* 23(6), pp. 647–657, 2007.
- [7] M. J. Kaminski, L. Kowalik, "Beyond the Vizing's bound for at most seven colors", SIAM J. Discrete Math. 28(3), pp. 1334–1362, 2014.
- [8] A. Kosovski, "Approximating the maximum 2- and 3-edge-colorable problems", *Discrete Applied Mathematics 157*, pp. 3593-3600, 2009
- [9] J.A. Bondy, U.S.R. Murty, "Graph Theory", Springer, 2008.
- [10] V. V. Mkrtchyan, E. Steffen, "Maximum Δ-edge-colorable subgraphs of class II graphs", J. Graph Theory 70(4), pp. 473-482, 2012.
- [11] T. Nishizeki, "On the maximum matchings of regular multigraphs", *Discrete Mathematics 37*, pp. 105-114, 1981.
- [12] T. Nishizeki, I. Baybars, "Lower bounds on the cardinality of the maximum matchings of planar graphs", *Discrete Mathematics 28*, pp. 255–267, 1979.
- [13] R. Rizzi, "Approximating the maximum 3-edge-colorable subgraph problem", *Discrete Mathematics 309(12)*, pp. 4166–4170, 2009.
- [14] J. Weinstein, "Large matchings in graphs", Canadian Journal of Mathematics 26(6), pp. 1498–1508, 1974.