
Visualization of Behavioral Aspects of AADL-Models

Sergey Zelenov, Denis Buzdalov

Software Engineering Department, Institute for System

Programming of Russian Academy of Sciences,

Moscow, Russia

e-mail: {zelenov, buzdalov}@ispras.ru

ABSTRACT
In the paper, we describe a metamodel to represent dy-
namics of AADL-models. The metamodel allows to vi-
sualize step-by-step a process of models’ behavioral as-
pects analysis. In particular, it essentially helps to de-
bug behavioral specifications. In the paper, we consider
examples of the metamodel usage to represent dynamics
for the following two aspects of AADL-models:

1. simulation of a modelled system on the basis of a
Behavior Annex specification;

2. failure modes and effects analysis on the basis of
an Error Model Annex specification.

We also present a stepwise visualization tool (engine and
applications for both mentioned examples) that is im-
plemented in MASIW framework for design of modern
avionics systems.

Keywords
model-based development, behavior specification, spe-
cifications validation, visualization

1. INTRODUCTION
Nowadays, the development process of large mission-
critical systems tends to become standardized. In par-
ticular, it requires to perform system analysis and cer-
tification stages in order to check that a system under
development meets all specified requirements. Modern
systems are very large and complex. Manual analysis of
such systems is very labor-consuming and expensive. In
some cases, it is simply impossible. Thus, it is necessary
to use automated tools and, consequently, to develop
formal models.

Architecture Analysis & Design Language (AADL [7])
is used to model avionics systems. In fact, AADL is a
standard in this area. The main purpose of AADL is
to describe the system architecture and requirements.
Model of a system looks like a hierarchy of hardware
and software components. Some of the components are
linked to each other. System requirements are speci-
fied as properties of corresponding components. AADL
allows to represent models both in textual and in graph-
ical form. Note that the textual form of AADL-models
is much better than, for instance, UML’s one, because
it is easy to read and edit.

AADL itself does not support any means to specify al-
gorithms. Nevertheless, there are a number of indepen-
dent extensions of AADL that provide suitable ways to

analyze AADL-models. In this paper, we consider two
extensions: Behavior Annex [5] that specifies the behav-
ior of a system, and Error Model Annex [6] that specifies
how local failures in components impact on environment
of those components.

Behavior Annex allows to monitor how a system changes
its state during the given time period. In other words,
it provides a way to simulate the behavior of a system.

Error Model Annex allows to monitor how failures in
components propagate their effects to a system as a
whole. In other words, it provides a way to perform
a failure mode and effect analysis — a kind of risk anal-
ysis.

In practice, both behavior simulation and failure effect
analysis may give incorrect results that does not meet
the expected ones. There are different reasons of such
phenomenon: errors in specifications, partially unsup-
ported protocols, etc. In order to search for a cause of
the problem, one needs convenient tools (like debugger
for programming languages) that allows to perform the
simulation/analysis step-by-step and show the current
state of model elements at each step.

All existing tools for development and analysis of AADL-
models use unified graphical representation and are com-
patible. Initially, this graphical representation was in-
tended to be used statically. Given the developed graph-
ical architectural model, one can launch various analyt-
ical applications in the context of the model as a whole
or a part of it. But always the launched analysis saves
results in separated tables, diagrams, traces, etc. Thus,
one cannot see the intermediate steps of the analysis.

Consequently, firstly, the required debugger must be
graphical and bound to source architectural diagram.
In other words, steps of simulation/analysis performed
in components must be shown over the corresponding
elements of the diagram. Secondly, representation of
AADL-model dynamics must be standardized in order
to use different feasible visualization tools to show dif-
ferent behavioral aspects of models.

This paper concerns the problem of building standard
representation of dynamics aspects of AADL-models.
We suggest a unified abstract metamodel of internal rep-
resentation of stepwise components interaction process.

In a separate section of the paper, we present a map-
ping of Behavior Annex and Error Model Annex into
the suggested metamodel. It proves the adequacy of
metamodel to the discussed problem.



2. RELATED WORKS
2.1 OSATE toolset
OSATE is an extensible AADL-based modelling tool
used for creation and analysis of AADL models [3]. Be-
sides other abilities, it has an instance model viewer
plugin [2]. This plugin allows to display the graphical
representation of AADL models in a static form:

• show components and links between them;
• show data flows: given a data flow f , highlight all

links used by f ;
• show error flows: given a component A, highlight

all components that may be affected by (any) fail-
ure in A.

Showing data flows is closely related to Behavior An-
nex specification and showing error flows is related to
Error Model Annex specification. But such displayed
flows are fetched statically and, thus, all possible flows
are displayed, but actually used flows (dynamically, un-
der the given initial conditions) cannot be displayed. In
particular, it does not display different important infor-
mation like the state of each component and data/errors
that are going through links.

Besides, these two seamingly connected facilities are not
connected and are implemented independently.

2.2 AADL Inspector
AADL Inspector is an AADL-model processing frame-
work [1] supporting different actions for development
and analysis of AADL-models. In particular, it sup-
ports editing and checking of Behavior and Error Model
Annex specifications.

AADL Inspector is integrated with the MARZHIN sim-
ulator [9]. It allows to analyze schedulability issues and
visualize different states, messages and events of given
components on the time scale. The bunch of displayed
information is tuned easily.

Similar to OSATE, AADL Inspector does not have fa-
cilities to depict different behavioral characteristics of a
single model got both from Behavior Annex and Error
Model Annex.

2.3 SCADE System with medini
SCADE System [4] is a well-known and popular tool for
creation of architecture models of complex systems. Re-
cently an AADL support plugin has been developed [11].
Also, some integration with the medini approach was
performed for fault-analysis [12].

These instruments can be connected into an automated
tool chain for representing and visualization of AADL
models with data flows and error propagation paths. It
is still under heavy development but at the moment, vi-
sualization functionality allows to analyze only a single
step of data or error propagation over the model.

3. SYSTEM BEHAVIOR METAMODEL
AADL core language gives an ability to define architec-
ture of a modelled system. The AADL standard con-
tains a metamodel definition, i.e., a bunch of terms and
abstractions that are used in this language and rela-
tions between these abstractions. This metamodel con-
tains main architectural notions: components and their
categories, component interface elements (so called, fea-
tures), connections and bindings (allocations), etc.

Specifications for Behavior and Error Model Annexes
are applied to certain model objects. Our goal is to vi-
sualize intermediate states and dynamics of evolution of
an architecture model according to its behavioral spec-
ification.

To visualize the evolution process of an architecture
model, we introduce a metamodel for behavioral speci-
fications, which consists of two parts:

• one for system architecture (which is an abstrac-
tion of the core language metamodel);

• behavior metamodel.

3.1 System architecture metamodel abst-

raction
We consider a modelled system as a bunch of interacting
components. These components can represent software,
hardware, composition of both, etc. To depict these in-
teractions, we introduce the notion of interaction chan-
nel.

In practice, interaction channels can be of very different
natures, for instance:

• relation of a container and contained;
• connection for data transmission;
• logical allocation (binding), e.g., execution of a

software component on a given platform;
• close physical collocation, when, for example, heat-

ing or vibration of one component can influence
the behavior of another one.

Thus, the system architecture metamodel abstraction
includes the following notions:

• individual elements:
– model component (possibly, including other

components);
– channel of interaction of two components;

• model itself, a bunch of several interacting com-
ponents.

3.2 Behavior metamodel
The base of the behavioral specification of a component
is its reaction on current conditions.

Behavior of a component depends on the influence of
other components and on some internal events that hap-
pen inside the components themselves. We consider
that each component at each step of its behaving can
be in one of several states which influence the behavior.
So, for a single step of behaving of a component we need

• the current state of a component;
• triggered internal events;
• influence of other components through interaction

channels.

We consider the reaction of a component on each step
to consist of

• change of the component state;
• influence of this component on the others through

interaction channels.

Behavior of a component can be non-deterministic, so,
in the same conditions a component can define several
reactions.

Thus, behavior metamodel contains the following no-
tions:

• elements describing a situation:



Figure 1. Suggested metamodel

– component state;
– internal events that can happen inside a com-

ponent;
– type of impact of one component on another

one (through the interaction channel);
• a step of component behavior, putting a set of

possible reactions in current situation;
• component reaction consisting of new component

state and impacts on the other components;
• a step of model behavior containing steps of com-

ponent behaviors for all relevant components.

All notions of the suggested metamodel and their rela-
tions are depicted in Figure 1. On the left there are ab-
stract system architecture notions, and on the right —
behavior specification metamodel notions.

4. EXAMPLES OF THE METAMODEL

APPLICATION
In this section, we show how Behavior Annex and Error
Model Annex of AADL map onto the suggested meta-
model. We describe which elements of these two speci-
fications correspond to the behavior metamodel.

4.1 Behavior Annex
4.1.1 Preliminaries

Behavior Annex specification at a glance is a state ma-
chine with specific transition conditions and transition
actions. Extended state machines are used, i.e., vari-
ables can be the part of the machine state in addition to
the usual named states similar to finite state machines.

This state machine can define reactions on incoming sig-
nals and messages from other components. In different
states and depending on variables values, the machine
can differently react on the same impacts. As a reac-
tion, component can send messages and generate events
towards the other components and also change its own
state and variables values.

Declaration allows explicitly declare time which it takes
to execute this or that state machine transition. This
allows to model time-consuming calculations and also to
model and analyze latencies that are brought by com-
ponents into signals processing.

In general case, Behavior Annex state machines can be
non-deterministic. In particular, the following aspects
can be non-deterministic:

• selection of a transition for the given state and
input events;

• time for calculations during transition execution;
• order of actions on transitions;
• particular data during assignments.

Behavior Annex specifications are closely related to the
architecture declarations. In particular, this annex does
not have any facilities for data modelling. AADL core
declarations are used for this. Also, for interactions
between components facilities like ports and bindings
from the AADL core are used.

4.1.2 Mapping to behavioral metamodel

Behavior Annex entities are mapped to the behavioral
metamodel in the following way.

AADL components are used as behavioral model’s com-
ponents as they are. Components of categories like
threads, processes, devices and subprograms can be used.
System components can be also used for behavioral mod-
elling of abstract subsystem in the model without pre-
cise modelling of its parts.

The main type of interaction channels used for Behav-
ior Annex specifications is port connection type. AADL
ports allow to transmit both data and control (events).
Also, when subprograms are modelled, control can be
transferred along so called subprogram access connec-
tions. Besides, binding relation can be used as an inter-
action channel (mainly, for transmitting events of con-
trol of software components by hardware ones).

Internal state of a component consists of the state ma-
chine’s state and a composite state of all variables ac-
cessible by Behavior Annex specification. This state
determines which transitions are available on different
incoming events and data arrival.

When sources of events or data are modelled to be in-
side a component, AADL’s internal port notion is used.
Such ports are represented as internal events in terms
of behavioral metamodel.

Impact of one component on another in behavioral model
for Behavior Annex is a data message and/or an event.
They can be

• a service call for different components (e.g., sub-
program call);

• message transmission through some net or ports
(including OS software ports);

• hardware signal (e.g., a signal from a sensor to
another hardware component or control software);



Figure 2. Behavior visualization mode

• controlling one of the components by another ones
(e.g., execution or context switch events).

During execution step, component with Behavior Annex
specification can

• change the state of the machine and variables;
• perform arbitrary calculations;
• spend arbitrary amount of the model time for cal-

culation;
• send messages and generate events going out to

other components through ports.

4.2 Error Model Annex

4.2.1 Preliminaries

Error Model Annex specification mainly consists of de-
scription of impact of failures in components to neigh-
bour components. If a component A has some failure
(this failure may be the result of either internal event
or another failure propagated from neighbours), then it
may impact the neighbour component B: as a result,
B also has failure. For example, if a processor fails,
then all processes that run on it immediately fail as
well. Note that failure propagates from component A

to component B instantly. Error Model Annex specifi-
cation of a component declares relevant error states of
the component: operational, failed, and in some cases
one or several intermediate states when the component
is partially failed. If a failure in a component A impacts
a component B, then B may change its state. Depend-
ing on its state, the component B propagates failures to
neighbour components.

4.2.2 Mapping to behavioral metamodel

In this subsection, we describe correspondence of Error
Model Annex entities to elements of suggested behav-
ioral metamodel.

Components of the behavioral metamodel are compo-
nents of source AADL-model. Interaction channel be-
tween two components is a cause-effect link that repre-
sents the impact of failure of one component on another.
Component state is an error state. Internal event is in-
ternal independent failures in a component. Kind of
impact of one component on another is a kind of failure
that one component propagates to another.

5. VISUALIZATION OF AADL-MODEL

BEHAVIOR
We used the behavioral metamodel described in the pa-
per in order to develop an engine for visualization of

AADL-model behavior. The implementation base for it
is MASIW [8, 10] which is a framework for development
and analysis of AADL-models. Based on the developed
visualization engine, we also developed plug-ins that vi-
sualize Behavior Annex and Error Model Annex.

The visualization engine provides the following support
of interactive dynamic analysis process:

• choose initial events;
• perform one step of dynamic analysis;
• “run” dynamic analysis steps until reach non-deter-

minism;
• in case of non-determinism, choose a branch for

the next step;
• show history of steps and visited branches;
• navigate the history:

– return to any previous step;
– jump to any step of already visited branch;

• at any step, show state of any component;
• at any step, show current causes and effects.

The behavior visualization mode has two main view ar-
eas (Fig. 2):

• left one — an architecture diagram of a system
under analysis (hierarchy of components, some of
them are linked to each other);

• right one — a history.

The history view consists of points and arrows. Points
represent different system states. Arrows represent tran-
sitions between states. Selected point is a current sys-
tem state that is displayed in the architecture diagram
view. Black arrows over an architecture diagram rep-
resent impacts between components in current system
state.

6. CONCLUSION
In this paper, a metamodel was suggested that allows
to describe behavioral aspects of modelled systems for
visualization upon static diagram of architecture. Such
visualization allows, in particular, to perform validation
of specifications of behavioral aspects of models.

The metamodel we suggest allows to depict dynamics
of AADL-model behavior specified with Behavior An-
nex and error propagations between the components in
AADL-models with Error Model Annex specifications.

Appropriate visualizer of behavior based on the sug-
gested metamodel has been implemented in the MASIW
framework with modules for visualization of Behavior
and Error Model Annexes.



We believe that this paper is the first step in the stan-
dardizing of representation of dynamic aspects of AADL-
models.

REFERENCES
[1] AADL Inspector. http://www.ellidiss.com/

products/aadl-inspector/.

[2] OSATE IMV plug-in. http://aadl.info/aadl/
osate/osate-doc/osate-plugins/imv.html.

[3] OSATE: Open Source AADL2 Tool Environment.
http://osate.org/.

[4] SCADE System.
http://www.esterel-technologies.com/

products/scade-system/.

[5] SAE International standard AS5506/2,
Architecture Analysis & Design Language
(AADL), Annex D: Behavior Model Annex, 2011.
http://standards.sae.org/as5506/2/.

[6] SAE International standard AS5506/1A,
Architecture Analysis & Design Language
(AADL), Annex E: Error Model Annex, 2015.
http://standards.sae.org/as5506/1a/.

[7] SAE International standard AS5506C,
Architecture Analysis & Design Language

(AADL), 2017.
http://standards.sae.org/as5506c/.

[8] D. V. Buzdalov, S. V. Zelenov, E. V. Kornykhin,
A. K. Petrenko, A. V. Strakh, A. A. Ugnenko,
and A. V. Khoroshilov. Tools for system design of
integrated modular avionics. In Proceedings of the
Institute for System Programming of RAS,
volume 26, pages 201–230, 2014.

[9] Pierre Dissaux and Olivier Marc. Executable aadl:
Real-time simulation of aadl models. In ACVI
2014 — Architecture Centric Virtual Integration
Workshop Proceedings, pages 59–68, 2014.

[10] Alexey Khoroshilov, Dmitry Albitskiy, Igor
Koverninskiy, Mikhail Olshanskiy, Alexander
Petrenko, and Alexander Ugnenko. AADL-based
toolset for IMA system design and integration.
SAE Int. J. Aerosp., 5:294–299, Oct 2012.

[11] Thierry Le Sergent. System design with SCADE
avionics package. In ANSYS Model-based Systems
Engineering (MBSE) Seminar, May 2017.

[12] Michael Soden. Fault analysis with medini. In
ANSYS Model-based Systems Engineering

(MBSE) Seminar, May 2017.


