
Design of Reparable Memory Systems with Shared Row

Redundancies

Karen Amirkhanyan, Samvel Shoukourian Valery Vardanian

Synopsys Synopsys Synopsys

Yerevan, Armenia Yerevan, Armenia Yerevan, Armenia

 kamirkha@synopsys.com samshouk@synopsys.com vvardani@synopsys.com

ABSTRACT
In this paper, we proposed a method for implementation of a

mechanism for “redundancy sharing” allowing to repair a

fault/defect in a memory instance from a memory system with

hundreds of memory instances with an available shared

redundant element of another memory instance. The

calculations showed that hardware is saved to a great extent

with a negligible impact on memory’s functional

performance.

Keywords
Memory system, repair, redundancy sharing, reparable/non-

reparable memory.

1. INTRODUCTION
Built-in Self-Repair (BISR) is widely used for improving

memory-core yield. Although, the portion of a BISR circuit

with respect to the area of the corresponding memory instance

area is usually small, but due to the number of hundreds of

memory instances in a memory system (MS), when each

memory instance with redundancy had its own BISR circuit,

the total area of the BISR circuits in an MS increased to a great

extent. To decrease the overall area overhead of BISR circuits

in an MS, many researchers proposed some notions of “shared

BISR”, grouping, reusing, multiple shared buses, etc. (see [1]-

[12]). They reduced the area overhead by performing test and

repair of memory instances serially that increased the time for

test and repair. To reduce area overhead and test & repair time,

“shared BISR” was used performing test & repair of multiple

memory instances in parallel. Hence, grouping is another

approach to be applied with respect to the typically great

number of memory instances in an MS to make use of the

property of structural identity of memory instances from the

same group.

Today’s complex MS usually contains hundreds of memory

instances. Built-in Self-Test (BIST) is one of the main

approaches for testing memories in an MS [1-12]. ARM

company has introduced a shared test bus and used it for

efficient test and repair purposes. Synopsys’s DesignWare

Multi-Memory Bus (MMB) [3], based on ARM’s shared test

bus, also used the bus for efficient test of multiple memory

instances attached to the bus. Mentor Graphics [2] proposed

to use a functional bus for its efficient testing in addition to

the test bus. We suggest here an idea of using the functional

bus for efficient repair of memories via “redundancy sharing”

due to which time and hardware are saved during the repair

[1-12].

The redundant elements remaining after manufacturing repair

can be used in the field during test and repair sessions and soft

repair performed periodically after power-up (see [1]).

However, in all above mentioned approaches [1-12] each

memory instance with redundancies used its own

redundancies as local redundancies for repair within one

instance only and did not have the capability to use other

available redundancies allocated for other memory instances

with redundancies. In other words, the redundancies of

memory instances were not sharable, they could not be used

by other memory instances. Although the proposed in [1]

SMS (STAR (Self-Test and Repair) Memory System) test and

repair solution shows high efficiency, however, there is still a

possibility to develop the approach farther allowing to save

much more hardware. There is an efficient way to save

hardware due to an effective and flexible usage of hardware.

It is based on the idea of “a sharing mechanism for

redundancies”. We connect the redundancies with the

functional bus and use them for the repair of any fault in any

reparable memory instance connected to the shared functional

and test buses. BIST is performed by means of the shared test

bus, and the repair is performed by means of the functional

bus. For the sake of accuracy, we should mention three

publications [16], [17], [18] where the expression

“redundancy sharing between different memories” was

mentioned. In [16], however, the text lacked in details

connected with the usage, implementation and estimation of

the impact on hardware and time of the chip performance. In

[17], a BISR technique for multiple repairable memory

instances with block-based redundancies was proposed.

Redundant rows and columns were divided into row and

column blocks and repair was being performed at the block

level. Based on the proposed block-repair mechanism, a

heuristic redundancy analysis algorithm was proposed.

However, for the considered small example of only four

memory instances the hardware overhead was only 7.6 % and

it is not clear at all how much it will be for hundreds of

memory instances. In [18], a Content-Addressable-Memory

(CAM) -based shared BISR structure is proposed for test and

repair of RAMs, as well as the corresponding repair strategy

for the shared BISR. Although the authors claim its high

efficiency with low area overhead but, however, the authors

do not talk about the memory access mechanism which

involves shared repair justifying this with their aim to simplify

discussion.

2. REDUNDANCY SHARING

MECHANISM FOR REPARABLE

MEMORIES
Meantime, in today’s new technology memories,

defects/faults are becoming less probable, and the

conventional usage of redundancies in each reparable memory

instance seems to be not efficient any more. The number of

possible defects that can be found in memory instances in an

MS can be estimated based on the current semiconductor

technology and the corresponding statistical data on defect

density for memory instances and the area occupied by them.

Defects in memories are now being measured by new criteria

and new notions, such as DPPB (Defective Parts Per Billion)

(see [19]), that has been introduced recently meaning that

memory devices are now very robust and reliable with very

low probabilities for fault/defect emergence. We propose to

share redundancies between all reparable memory instances

mailto:kamirkha@synopsys.com
mailto:samshouk@synopsys.com
mailto:vvardani@synopsys.com

and, thus, allocate redundant elements not within individual

memory instances but within the whole MS introducing the

capability of repairing any fault/defect that could be detected

in any memory instance in the MS. Note that initially the MS

could contain instances without redundancies, i.e.

unrepairable memory instances that were initially

unrepairable, but however, after applying the proposed

approach of redundancy sharing they will become reparable.

Thus, redundancy sharing will also increase the reliability of

the MS as a whole since after the modification all memory

instances will become reparable. We propose to deprive all

reparable instances in the MS of all redundant elements and

keep only one reparable instance with several global

redundancies designated for the repair of all memory

instances, and we should have a possibility for the memory

instance to repair each defect in each memory instance

contained in the MS. The few redundancies allocated for one

reparable memory instance should be enough for repairing all

possible faults in each memory instance in the MS. The

defects that will be detected during the BIST session will be

repaired by the BISR engine. Since it is not predictable the

actual location of faults/defects in the MS, then the only

requirement is to have the capability for sharing these few

redundancies for repairing the possible defects/faults in all

memory instances.

A similar methodology is being currently developed for the

“shared repair with column redundancies”. Due to the page

limitations and for the sake of simplicity, we will constraint

ourselves in this paper with consideration of a simple case

when the MS contains only row redundancies, and all memory

instances are identical instances without redundancies, and

there is only one reparable memory instance of the same size

with redundant rows. The MS considered has a test bus (used

for test) and a functional bus (used for repair) of all memory

instances in the memory system.

3. SOME DETAILS OF

IMPLEMENTATION

3.1. Conventional Hardware

Implementation
Consider a memory system consisting of hundreds of memory

instances. Memory instances are either reparable memories

with redundant rows or memories with no redundancies.

First, we apply Synopsys’s DesignWare STAR memory

grouping tool to group the memory instances into sub-groups

according to the memory structural parameters and including

the memory instances with identical structure into one group.

Thus, consider a sub-group of memory instances Gi = {M1,

M2, …, Ms} where all memory instances Mi, i=1,…, s, have

the same structure, i.e. the same number of rows and columns,

all are with the same number of redundant rows, or all of them

have no redundancies. Note that we exclude the special case

when all the memory instances in a group Gi are all without

redundancies. In this case, however, we suggest to keep the

structure of the group unchanged.

Now, suppose a group Gi contains memory instances M1, …,

Ms where each instance Mi has two redundant row groups,

each redundant row group consisting of Dx physical rows.

This parameter depends on memory technology and is the

same for all memory instances in a sub-group. We propose a

few basic steps for implementation of the hardware. Figure 1

depicts the conventional solution of the SMS group Gi. We

consider a special case when each memory instance Mi, i=1,

…, s, has two redundancy row groups where each row group

R1 and R2, consists of Dx redundant physical rows.

Next, in Fig. 1, 1500 is the 1500 standard interface, Mi, i=1,

…, s, are the memory instances with redundancy elements, Wi

are the wrapper logic of the memories Mi, i=1, …, s, for BISR,

Rl. R2, are respectively the first and second row redundancy

group for Mi with Dx physical row redundancies the

redundancy elements, MEi are the enable signals of the

functional bus for memory Mi. symbols “X” are examples of

defects/faults in the memory instance.

In the conventional SMS group, the repair mechanism is

implemented by means of the redundant elements in a

memory. Those redundancies are placed locally in the

memory instance and can be used for repairing of the defects

in the particular memory instance only that is a big limitation

for the memory system reparability, in general.

 3.2. Implementation of the Proposed

Shared Row Mechanism

In Figure 2. the implementation of the memory sub-group of

identical memory instances with two redundant row groups

with the shared row redundant elements is presented.

MRR

SMSi

Server

Fuse

Box

W1 M1

RR t

M2

RR2

W2

RR1

Ws

MEk

ME1

ME2

MEs

1500

…

Fig. 2. The SMS group with the shared

row redundant elements

SRC

MEs

REt REt

RE2

RE1

1500

X

 XX

SMSi

Server

Fuse

Box

W1

M1

X

RR1

RR2

W2

Ws MEn

ME1

1500

…

Fig. 1. Conventional structure of the SMS group

M2

XX

MEs

RR1

RR2

ME2

R1

Ms

RR1

RR2
R2

Rs

SRC is the shared redundancy control RTL unit, REni, i=1,

…, s, are the redundancy enable signals, Mi are the memory

instances without the redundant rows, MRR is the memory

instance with the shared row redundant elements, number of

which is determined by multiplication of Defect Density and

Memory Area in the memory system, the symbol.

4. ESTIMATIONS OF PERFORMANCE

AND AREA SAVING

4.1. Performance Evaluation
The main issue related with SCR implementation is the time

delay which is added additionally to the path of Memory

Enable (ME) signal. This delay can be critical especially for

the case of performance of the functional bus at the maximum

frequency. Some SPICE simulations have been done by using

the memory model of 28nm technology. The simulation

results confirm the correct work of the memory with SRC unit

at the maximum frequency.

In the case when the “shared redundancy mechanism” is used,

the repairing of a defect in each memory in the memory

system is performed by means of the row redundancy

elements which are placed in the special memory instance

MRR. The repairing is done through the functional bus of the

memory system. The switching between a defective address

and a redundant element is implemented in the SRC RTL unit.

In Figure 3. the flow chart of the SRC unit is presented. The

SRC block contains the redundancy registers (RRi) that are

intended for storing of the address of a defective cell. The

output of the register RR is joined with a comparator (=).

The comparator compares in real time the value of the RR

with the address value on the address of the functional bus

(ADR signals). If the address coincides with the address of

RR then SRC unit blocks the memory enable signal MEi of

the corresponding memory instance on AND element(s) and

simultaneously activates the Redundancy enable (REk) signal

for the corresponding redundant element. The number of RR

registers is the same as the number of the redundant elements

in the MRR memory instance. Information in RR registers can

be updated through serial input/output ports (SI and SO

signals) by SMS processor or by Server by means of standard

1500 interface.

4.2. Area Saving

Introduce the following notations:

Dx - number of physical rows in a redundant row group,

DM - defect density of an SRAM memory,

AM - area of a memory with redundancies,

DM . AM – number of possible defects in a memory with

redundancies,

Ab – area of a bit-cell b in a memory,

m – number of memories with redundancies on the functional

bus of the memory system,

k – number of columns in a memory,

l – number of rows in a memory.

According to our proposal of “shared row mechanism”, all the

memory instances with redundancies in a memory group of

identical memory instances are proposed to replace with

corresponding instances with no redundancies but retaining

only one reparable instance with the number of row

redundancies equal to the multiplication of memory defect

density by the area of the memory system. As a result, since

row redundancies of the other instances are removed, and

since the number of such instances with excluded row

redundancies may be a few hundred in modern SoCs then the

area saving is significant. Based on Figures 4 and 5, the

percentage of the redundancy area saving can be estimated by

the following formula:

ΔR = ((RM - R*M)/RM) 100 % ,

where RM is the area of the redundant rows in the given

memory system, and R*M is the area in the modified circuit

after excluding the unnecessary redundant rows. Then area

saving can be estimated as follows:

ΔR =(1- DMAM/m) 100 %= (1 – lkAbDM) 100% .

RR

2

=

1

MEk ME1

Fig. 3. Flow Chart of the Shared Redundancy Control

(SRC) unit

MEs

REt

RE2

RE1

1500

RR

1

RR

t

=

=

&

B

U

F

F

E

R

MSE

N

ADR

ADR

ADR

ME2

SRC

unit

SI

SO

SMSi
SI SO

…

1500

M1

Fig. 4. Group of identical memory instances with

two redundant row-groups

2 redundant row-groups

M2

b …

m Reparable memories

b b …

Mm

M1

Fig. 5. Group of m identical memory instances

 with two redundant row-groups

M2

b …

(m-1) instances with no redundant rows

b b …

Mm

An instance with redundant rows

DM*AM redundant row-groups

(Dx redundant physical rows)

Mm-1

Our calculations for different configurations of memory

instances contained in the memory system showed significant

saving of hardware due to the sharing mechanism of row

redundancies in memory instances resulting in exclusion of a

great amount of redundant area in memory instances.

 5. CONCLUSION
In this paper, we proposed a “redundancy sharing

mechanism” for the repair of a fault/defect in a memory

instance from a memory system with hundreds of memory

instances with an available shared redundant row of another

memory instance. The calculations showed that hardware is

saved to a great extent with a negligible impact on memory’s

functional performance.

In the future, we are planning to extend this research for the

cases of redundant columns and 2D redundancy when both

redundant columns and rows are available in memory

instances.

REFERENCES
[1] Y. Zorian and S. Shoukourian, ‘‘Embedded-

Memory Test and Repair: Infrastructure IP for SoC Yield,’’

IEEE Design & Test of Computers, vol. 20, no. 3, pp. 58-

662003.

[2] D. Sargent, “Viewpoint: Memory BIST for shared-bus

applications”, EDN Network, February 16, 2012,

http://www.edn.com/design/test-and-

measurement/4389500/Viewpoint-Memory-BIST-for-

shared-bus-applications .

[3] C.-L. Su, R.-F. Huang, and C.-W. Wu, ‘‘A Processor-

Based Built-in Self-Repair Design for Embedded Memories,’’

Proc. 12th Asian Test Symp. (ATS 03), IEEE CS Press, pp.

366-371, 2003.

[4] R.C. Aitken, ‘‘A Modular Wrapper Enabling High Speed

BIST and Repair for Small Wide Memories,’’ Proc. Int’l Test

Conf. (ITC 04), IEEE CS Press, pp. 997-1005, 2004.

[5] T.-W. Tseng, J.-F. Li, and C.-C. Hsu, ‘‘ReBISR: A

Reconfigurable Built-in Self-Repair Scheme for Random

Access Memories in SOCs,’’ IEEE Trans. Very Large Scale

Integration (VLSI) Systems, vol. 18, no.6, pp. 921-932, 2010.

[6] C.-D. Huang, J.-F. Li, and T.-W. Tseng, ‘‘ProTaR: An

Infrastructure IP for Repairing RAMs in System-on-Chips,’’

IEEE Trans. Very Large Scale Integration (VLSI) Systems,

vol. 15, no. 10, pp. 1135-1143, 2007.

[7] T.-W. Tseng, J.-F. Li, and C.-S. Hou, “A Built-in Method

to Repair SoC RAMs in Parallel”, IEEE Design & Test of

Computers, vol. 27, no. 6, pp. 46-57, 2010.

[8] N. B. Singh, A. Bhat, A. Anand, R. Tiwari, A. Kothiala,

“Method and Apparatus for Multiple Memory Shared Collar

Architecture”, US Patent application 20160062864, 2016.

[9] C.-L. Su, R.-F. Huang, and C.-W. Wu, “A Processor-

Based Built-In Self-Repair Design for Embedded Memories,”

Proc. 12th Asian Test Symposium (ATS’03), pp. 366-371,

2003.

[10] K. Darbinyan, G. Harutyunyan, S. Shoukourian, V.

Vardanian, Y. Zorian, “A Robust Solution for Embedded

Memory Test and Repair”, IEEE Asian Test Symposium

(ATS), pp. 461-462, 2011.

[11] S. Bahl, B. Singh, “A Novel Method for Silicon

Configurable Test Flow and Algorithms for Testing,

Debugging and Characterizing Different Types of Embedded

Memories through a Shared Controller”, Records of the 2004

Int’l Workshop on Memory Technology, Design and Testing

(MTDT’04), pp. 78-83, 2004.

[12] N. Bhushan Singh et al, “Method and Apparatus for

Multiple Memory Shared Collar Architecture”, US Patent

Application US2016/0062864 A1, 2016.

[13] Synopsys Press Release: “Synopsys STAR Memory

System Multi-Memory Bus Processor Enables 10 Percent Die

Size Reduction for Marvell SoC,”

http://news.synopsys.com/2014-10-21-Synopsys-STAR-

Memory-System-Multi-Memory-Bus-Processor-Enables-10-

Percent-Die-Size-Reduction-for-Marvell-SoC .

[14] Synopsys Press Release: “Imagination Technologies

Adopts Synopsys STAR Memory System for Embedded

Memory Test and Repair for New MIPS Processor,”

http://news.synopsys.com/2016-11-15-Imagination-

Technologies-Adopts-Synopsys-STAR-Memory-System-for-

Embedded-Memory-Test-and-Repair-for-New-MIPS-

Processor .

[15] S. Adham, P. Saggurti, “TSMC's Use of Synopsys STAR

Memory System: Features and Capabilities”,

https://webinar.techonline.com/19700?keycode=CAA1CC .

[16] S. Bahl, “A Sharable Built-in Self-repair for

Semiconductor Memories with 2-D Redundancy Scheme”,

22nd IEEE Int’l Symposium on Defect and Fault Tolerance in

VLSI Systems, pp. 331-339, 2007.

[17] S.-K. Lu, Z.-Yu Wang, Yi-Ming Tsai, and Jiann-Liang

Chen, “Efficient Built-In Self-Repair Techniques for Multiple

Repairable Embedded RAMs”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

vol. 31, no. 4, pp. 620-629, 2012.

[18]. G. Wang, C. Chang, “Design and Implementation of

Shared BISR for RAMs: A Case Study,” IEEE Autotestcon,

Anaheim, CA, pp. 1-7, 2016.

[19] D. Park, “Move ICs from defects per million to defects

per billion”, http://www.edn.com/design/test-and-

measurement/4443160/Move-ICs-from-defects-per-million-

to-defects-per-billion .

http://www.edn.com/design/test-and-measurement/4389500/Viewpoint-Memory-BIST-for-shared-bus-applications
http://www.edn.com/design/test-and-measurement/4389500/Viewpoint-Memory-BIST-for-shared-bus-applications
http://www.edn.com/design/test-and-measurement/4389500/Viewpoint-Memory-BIST-for-shared-bus-applications
http://news.synopsys.com/2014-10-21-Synopsys-STAR-Memory-System-Multi-Memory-Bus-Processor-Enables-10-Percent-Die-Size-Reduction-for-Marvell-SoC
http://news.synopsys.com/2014-10-21-Synopsys-STAR-Memory-System-Multi-Memory-Bus-Processor-Enables-10-Percent-Die-Size-Reduction-for-Marvell-SoC
http://news.synopsys.com/2014-10-21-Synopsys-STAR-Memory-System-Multi-Memory-Bus-Processor-Enables-10-Percent-Die-Size-Reduction-for-Marvell-SoC
http://news.synopsys.com/2016-11-15-Imagination-Technologies-Adopts-Synopsys-STAR-Memory-System-for-Embedded-Memory-Test-and-Repair-for-New-MIPS-Processor
http://news.synopsys.com/2016-11-15-Imagination-Technologies-Adopts-Synopsys-STAR-Memory-System-for-Embedded-Memory-Test-and-Repair-for-New-MIPS-Processor
http://news.synopsys.com/2016-11-15-Imagination-Technologies-Adopts-Synopsys-STAR-Memory-System-for-Embedded-Memory-Test-and-Repair-for-New-MIPS-Processor
http://news.synopsys.com/2016-11-15-Imagination-Technologies-Adopts-Synopsys-STAR-Memory-System-for-Embedded-Memory-Test-and-Repair-for-New-MIPS-Processor
https://webinar.techonline.com/19700?keycode=CAA1CC
http://www.edn.com/design/test-and-measurement/4443160/Move-ICs-from-defects-per-million-to-defects-per-billion
http://www.edn.com/design/test-and-measurement/4443160/Move-ICs-from-defects-per-million-to-defects-per-billion
http://www.edn.com/design/test-and-measurement/4443160/Move-ICs-from-defects-per-million-to-defects-per-billion

