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ABSTRACT 
The main purpose of this paper is to introduce a new method 

of static and dynamic fault representation with the help of 

DFA formalization. This method can be used during memory 

behavior simulation at register transfer level. 
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1. INTRODUCTION
Abstraction of SRAM memory defects with faults started to 

be used since the design of first memory devices. One of the 

earliest methods base on finite state machine abstraction was 

introduced in [1]. Fault notations for static single-cell and 

coupling faults were also introduced and further enhanced in 

[2] and are known as <S/F/R> and <Sa, Sv/F/R> fault 

notations correspondingly. Furthermore the decrease of 

memory cell size led to new types of faults called dynamic 

[3] to be introduced and the fault notation was expanded in a 

way that allowed to interprete S, Sa and Sv as sequences of 

operations. There is a technique of fault injection in SPICE 

Netlist introduced in [4] that models the real memory cell 

defects and requires gate level simulation. Another approach 

of fault modeling using Mealy automata was introduced in 

[5]. Though this method uses a higher level of abstraction, 

than SPICE Netlist fault injection, it covers faults that are 

sensitized with a single operation and the problem of 

choosing initial memory state remains open. Adequate fault 

modeling might be crucial for development of efficient test 

algorithms for memory test and repair [6].  

This is the structure of the paper. Section 2 suggests a new 

method of modeling the faults with deterministic finite 

automata (DFAs), that is based on <S/F/R> and <Sa, 

Sv/F/R> dynamic fault notations, supports any sequence of 

fault sensitizing operations and solves the problem of 

picking the initial state of memory cell. Section 3 suggests 

an application for modeling the fault in register transfer level 

(RTL) simulation. Future work is described in section 4. 

2. MODELING FAULTS WITH DFA
The purpose of using DFA is that they allow analyzing test 

algorithms as words in a language of operations. We defined 

our model based on the DFA formal definition from [7]. 

Two DFAs will be introduced for single-cell and coupling 

faults correspondingly. Though single-cell faults can be also 

modeled using the second DFA for coupling faults. 

2.1. Advantages of the DFA model 
The state machine model of faults was introduced in [1]. 

This model can be represented as 

SM = (Q, ∑, δ), where 

Q = {0, 1} 

∑ = {W0, W1} 

δ: Q x ∑ => Q, ∀  q ∈   Q and ∀  a ∈   ∑ 

The advantages of DFA model are the presence of initial and 

final states, which are necessary for modeling more complex 

faults.   

It will be shown later that the DFA model extends this state 

machine model, thus DFA can model every fault that can be 

modeled with state machine. 

2.2. Initial state 
The problem of the choice of initial state was considered in 

our DFA model. The initial state of memory cell may impact 

its behavior, e.g. sequence of operations W0R0 (write 0, read 

value expecting 0) will trigger fault <0W0/1/0> on cell with 

initial state 0 and won’t do that for initial state 1. 

Thus each fault should be modeled twice for each initial state 

(single-cell faults) or fourth (coupling faults). To eliminate 

the necessity of modeling faults for each initial state, we 

considered using unknown initial state, i. e. the state could 

be either 0 or 1.  Unknown states are widely used in RTL 

simulations of the circuits. 

2.3. Reset operation
Reset operation is introduced here due to the requirement on 

dynamic faults [8], that fault can be triggered only if the 

sequence of operations is applied uninterruptedly, straightly 

on the memory cell, e.g. if fault is triggered after R0R0R0 

sequence is applied on memory cell, but only two reads are 

being applied to the cell and then the operations are done to 

another cell, its state should be reset. 

Reset operation should be explicitly passed to the DFA of 

faulty memory cell any time a switch to another cell is made 

from memory device top level. 

Figure 1.  State machines for single-cell faults from [1] 



 

2.4. A DFA model for single-cell faults  
Below is the definition of DFA for single-cell dynamic 

faults: 

DFA Asingle-cell = (Q, ∑, δ, q0, F) 

Q = {SXRX, S0R0, S1R1} ∪   {FISi : FISi  ∈   {S0R0, 

S1R1}, i = 1,…,n  , where n is finite and n ≥ 0 } ∪   {FAS: 

FAS ∈  {S0R0, S1R1, S0R1, S1R0}} 

∑ = {W0, W1, R, reset} 

δ: Q x ∑ => Q, ∀  q ∈   Q and ∀  a ∈   ∑ 

q0 ∈   {SxRx} 

F = { FAS } 

Here Q – the states of DFA, ∑ - input alphabet, δ – transition 

function, q0 – initial state, F – final state. 

Each state of DFA is defined as a couple <S, R> , where S – 

is the value of the state, R – the result returned by read 

operation on that state. Each of S and R can have 3 values 

{X, 0, 1} where X is used once in SXRX initial state and 

represents an unknown state, i. e. we have no idea what 

value is stored in the state, nor what will read operation 

return. FISi - fault intermediate states: their number may 

vary based on the number of operations in the fault 

sensitizing sequence. FAS –fault activation state: the state 

where the faulty behavior is triggered. Example of a single 

cell fault is shown in figure 2. 

0 and 1 states of state machine model correspond to S0R0 

and S1R1 in our DFA. Because of QSM ⊆ QDFA, ∑SM ⊆  

∑DFA , δSM ⊆  δDFA , DFA model is an extension for specified 

state machine. 

2.5. A DFA model for coupling faults  
The main difference of the second DFA is that each state as a 

triple <Sa, Sv, R>, where Sa – state of aggressor cell, Sv – 

state of victim cell, R – read operation returned value on 

victim cell. 

The values are defined the same way as in 3.1. 

DFA Acoupling = (Q, ∑, δ, q0, F) 

Q = { RαSaβSvα : α, β ∈  {0,1,x}} ∪  {FISi : FISi  ∈  {{ 

RαSaβSvα : α, β ∈  {0,1 }}, i = 1,…,n  , where n is finite and 

n ≥ 0 } ∪  {FAS: FAS ∈  { RαSaβSvγ : α, β, γ ∈  {0,1 }}} 

∑ = {Wa0, Wa1, Wv0, Wv1, Ra, Rv, reset} 

δ: Q x ∑ => Q, ∀  q ∈   Q and ∀  a ∈   ∑ 

q0 ={ RxSaxSvx } 

F = { FAS } 

The DFA model for coupling fault may be represented as a 

composition of  two states and two blocks (figure 3). 

In this paper, for convenience, we will consider the DFA of 

<0w1; 1w0r0/0/1> fault. 

2.5.1 Initial state and initialization block  
These two blocks have the same structure for all coupling 

faults.  

It should be noted that initial unknown state is a combination 

of two initial unknown states of aggressor and victim cells, 

thus it leads to 4 more unknown states {2.1, 2.2, 2.3, 2.4} to 

be used in DFA (figure 4).  
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Figure 2. DFA for <0r0/0/1>  fault. 
Figure 3. Structure of coupling fault DFA. 

Figure 4. Initial state and initial block of any coupling fault 

DFA. 

Ra, Rv, Wa1 

 reset 

1.Initial 

state 

User
Cross-Out

User
Cross-Out

User
Cross-Out



 
 

 
 

 

2.5.2 Fault behavioral block and fault 

activation state  
Shaded states {3.1, 3.2, 3.3, 3.4} in the figure 5 are present 

in any coupling fault DFA. On the other hand states {3.5, 

3.6} are intermediate states ensuring that fault will be 

activated after a certain sequence of operations described in 

the fault notation.  

The bolded way leading from state 3.3 to FAS 4 corresponds 

to the sequences of 0w1 and 1w0r0 from the fault notations. 

If any other operation is applied, the sequence of fault 

activating operations is being reset, thus the applied 

operations leads to one of the four {3.1, 3.2, 3.3, 3.4} states. 

Finally, read operation needs to be applied to FAS in order to 

observe the fault. 

 

3. APPLICATION 

3.1. Converting DFA to Mealy state 

machine 
Introduced DFAs can be easily converted to Mealy state 

machine (SM) by adding Ω = {-, 0 ,1}, and λ: Q x ∑ => Ω, 

∀  q ∈   Q and ∀  a ∈   ∑, where Ω – output alphabet, λ – 

output function, and λ on { wa0, wa1, wv0, wv1, reset } 

returns “-”, and returns “0” or “1” on  

rv - depending on R value of the state 

ra – depending on Sa value of the state 

 

3.2. Injecting faults via memory top level 

design Verilog test bench 
The proposed fault models can effectively be implemented 

using System Verilog, without affecting the SoC design. The 

only thing that is required for implementation of fault model 

is the knowledge of memory module positioning in the SoC 

hierarchy and the names of memory pins. 

The fault models are positioned outside of SRAM memory 

model, capturing memory data input, output and address 

buses, write-enable (WE) pin and operating under the 

memory clock frequency (figure 7). Fault module uses 

Mealy SM for fault representation. Each fault module is 

attached to a specific memory address, i.e. triggering the 

fault state machine, based on address bus value. Applied 

operation is being passed to fault module via WE pin. If it is 

‘read’ operation, output bus value is being determined by 

Mealy SM, if fault address is being passed via address bus, 

and is determined by memory address bus otherwise.   

 
 

3.3. Implementation 
Each state of Mealy SM is modeled as a descriptor as shown 

in figure 8 (example for single-cell faults). 
Mealy SM is modeled as a table (array) of such descriptors, a 

pointer to the table, two variables storing initial and final 

states of Mealy SM. Such model is guaranteed to work with 

O(1) access time if implemented in System Verilog. 
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 Figure 5. Fault behavioral block and final state of  

<0w1; 1w0r0/0/1> fault DFA. 

Figure 6. Connections between initialization block and fault 

behavioral block for <0w1; 1w0r0/0/1> fault. 

Figure 7. Fault Mealy SM modeled in RTL. 

 

Figure 8. Mealy SM state descriptor for single-cell fault. 
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The flags of each descriptor are initial assigned with 0 value. 

A flag of a descriptor is being set to 1 if corresponding 

operation is being accepted by Mealy SM. That allows 

monitoring of Mealy SM coverage during the simulation. 

Here is an approach for implementing single-cell faults 

with two always blocks in top-level test bench (assuming 

read operation value can be observed to DATA_OUTPUT 

bus on clock negedge, if operation is applied on clock 

posedge): 
always @(posedge `MEMORY_HIER_PATH.CLK) 

begin 

`MEMORY_HIER_PATH.ADDR  is tracked. Reset operation 

is called if address is being changed from the address of the fault 
fault_cell_address. 

    if(`MEMORY_HIER_PATH.ADDR ==  fault_cell_address) 

  begin 

Determining the operation based on value of  

`MEMORY_HIER_PATH.WE pin. Value of write operation 

is obtained from `MEMORY_HIER_PATH.DATA_INPUT. 
Value of read operation is stored for using in the next always 

block. 

  end 

end 

always @(negedge `MEMORY_HIER_PATH.CLK)  

begin 

If read operation was applied, force stored read value on 

`MEMORY_HIER_PATH.DATA_OUTPUT after a small delay 
to ensure that race condition won’t occur. 

end 

4. FUTURE WORK
This paper offers test models for static and dynamic single-

cell and coupling faults. There are other type of faults to be 

considered [9], such as linked fault. As it is shown in [10] all 

known fault can be divided into fault families and 

represented with periodicity table. Complete solution will be 

extending the introduced DFA model to cover the periodicity 

table.  

5. CONCLUSION
An approach for modeling dynamic single-cell and coupling 

faults via automata models was introduced in this paper. This 

model was compared to other known models, and the 

advantages were shown.  An implementation was proposed, 

that does not affect the simulation time. Based on structured 

representation of the faults in the proposed model, it is 

planned to extend the model to involve other known faults in 

periodic manner. 
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