
Modeling Dynamic Single-Cell and Coupling Faults

Via Automata Models

Davit Hayrapetyan

Yerevan State University

Yerevan, Armenia

e-mail: davidhayrapetyan@ymail.com

Aleksandr Manukyan

Synopsys Inc.

Yerevan, Armenia

e-mail: aleksandr.manukyan@synopsys.com

ABSTRACT
The main purpose of this paper is to introduce a new method

of static and dynamic fault representation with the help of

DFA formalization. This method can be used during memory

behavior simulation at register transfer level.

Keywords
Fault modeling, single-cell faults, dynamic faults, coupling

faults, DFA.

1. INTRODUCTION
Abstraction of SRAM memory defects with faults started to

be used since the design of first memory devices. One of the

earliest methods base on finite state machine abstraction was

introduced in [1]. Fault notations for static single-cell and

coupling faults were also introduced and further enhanced in

[2] and are known as <S/F/R> and <Sa, Sv/F/R> fault

notations correspondingly. Furthermore the decrease of

memory cell size led to new types of faults called dynamic

[3] to be introduced and the fault notation was expanded in a

way that allowed to interprete S, Sa and Sv as sequences of

operations. There is a technique of fault injection in SPICE

Netlist introduced in [4] that models the real memory cell

defects and requires gate level simulation. Another approach

of fault modeling using Mealy automata was introduced in

[5]. Though this method uses a higher level of abstraction,

than SPICE Netlist fault injection, it covers faults that are

sensitized with a single operation and the problem of

choosing initial memory state remains open. Adequate fault

modeling might be crucial for development of efficient test

algorithms for memory test and repair [6].

This is the structure of the paper. Section 2 suggests a new

method of modeling the faults with deterministic finite

automata (DFAs), that is based on <S/F/R> and <Sa,

Sv/F/R> dynamic fault notations, supports any sequence of

fault sensitizing operations and solves the problem of

picking the initial state of memory cell. Section 3 suggests

an application for modeling the fault in register transfer level

(RTL) simulation. Future work is described in section 4.

2. MODELING FAULTS WITH DFA
The purpose of using DFA is that they allow analyzing test

algorithms as words in a language of operations. We defined

our model based on the DFA formal definition from [7].

Two DFAs will be introduced for single-cell and coupling

faults correspondingly. Though single-cell faults can be also

modeled using the second DFA for coupling faults.

2.1. Advantages of the DFA model
The state machine model of faults was introduced in [1].

This model can be represented as

SM = (Q, ∑, δ), where

Q = {0, 1}

∑ = {W0, W1}

δ: Q x ∑ => Q, ∀ q ∈ Q and ∀ a ∈ ∑

The advantages of DFA model are the presence of initial and

final states, which are necessary for modeling more complex

faults.

It will be shown later that the DFA model extends this state

machine model, thus DFA can model every fault that can be

modeled with state machine.

2.2. Initial state
The problem of the choice of initial state was considered in

our DFA model. The initial state of memory cell may impact

its behavior, e.g. sequence of operations W0R0 (write 0, read

value expecting 0) will trigger fault <0W0/1/0> on cell with

initial state 0 and won’t do that for initial state 1.

Thus each fault should be modeled twice for each initial state

(single-cell faults) or fourth (coupling faults). To eliminate

the necessity of modeling faults for each initial state, we

considered using unknown initial state, i. e. the state could

be either 0 or 1. Unknown states are widely used in RTL

simulations of the circuits.

2.3. Reset operation
Reset operation is introduced here due to the requirement on

dynamic faults [8], that fault can be triggered only if the

sequence of operations is applied uninterruptedly, straightly

on the memory cell, e.g. if fault is triggered after R0R0R0

sequence is applied on memory cell, but only two reads are

being applied to the cell and then the operations are done to

another cell, its state should be reset.

Reset operation should be explicitly passed to the DFA of

faulty memory cell any time a switch to another cell is made

from memory device top level.

Figure 1. State machines for single-cell faults from [1]

2.4. A DFA model for single-cell faults
Below is the definition of DFA for single-cell dynamic

faults:

DFA Asingle-cell = (Q, ∑, δ, q0, F)

Q = {SXRX, S0R0, S1R1} ∪ {FISi : FISi ∈ {S0R0,

S1R1}, i = 1,…,n , where n is finite and n ≥ 0 } ∪ {FAS:

FAS ∈ {S0R0, S1R1, S0R1, S1R0}}

∑ = {W0, W1, R, reset}

δ: Q x ∑ => Q, ∀ q ∈ Q and ∀ a ∈ ∑

q0 ∈ {SxRx}

F = { FAS }

Here Q – the states of DFA, ∑ - input alphabet, δ – transition

function, q0 – initial state, F – final state.

Each state of DFA is defined as a couple <S, R> , where S –

is the value of the state, R – the result returned by read

operation on that state. Each of S and R can have 3 values

{X, 0, 1} where X is used once in SXRX initial state and

represents an unknown state, i. e. we have no idea what

value is stored in the state, nor what will read operation

return. FISi - fault intermediate states: their number may

vary based on the number of operations in the fault

sensitizing sequence. FAS –fault activation state: the state

where the faulty behavior is triggered. Example of a single

cell fault is shown in figure 2.

0 and 1 states of state machine model correspond to S0R0

and S1R1 in our DFA. Because of QSM ⊆ QDFA, ∑SM ⊆

∑DFA , δSM ⊆ δDFA , DFA model is an extension for specified

state machine.

2.5. A DFA model for coupling faults
The main difference of the second DFA is that each state as a

triple <Sa, Sv, R>, where Sa – state of aggressor cell, Sv –

state of victim cell, R – read operation returned value on

victim cell.

The values are defined the same way as in 3.1.

DFA Acoupling = (Q, ∑, δ, q0, F)

Q = { RαSaβSvα : α, β ∈ {0,1,x}} ∪ {FISi : FISi ∈ {{

RαSaβSvα : α, β ∈ {0,1 }}, i = 1,…,n , where n is finite and

n ≥ 0 } ∪ {FAS: FAS ∈ { RαSaβSvγ : α, β, γ ∈ {0,1 }}}

∑ = {Wa0, Wa1, Wv0, Wv1, Ra, Rv, reset}

δ: Q x ∑ => Q, ∀ q ∈ Q and ∀ a ∈ ∑

q0 ={ RxSaxSvx }

F = { FAS }

The DFA model for coupling fault may be represented as a

composition of two states and two blocks (figure 3).

In this paper, for convenience, we will consider the DFA of

<0w1; 1w0r0/0/1> fault.

2.5.1 Initial state and initialization block
These two blocks have the same structure for all coupling

faults.

It should be noted that initial unknown state is a combination

of two initial unknown states of aggressor and victim cells,

thus it leads to 4 more unknown states {2.1, 2.2, 2.3, 2.4} to

be used in DFA (figure 4).

Last operation

in fault

sensitizing

sequence Sv

Resetting fault

2. Initialization block

3. Fault behavioral block

4. Fault

activation
state

Write

operations

Rx

Sax

Svx

Rx

Sa0

Svx

Rx

Sa1

Svx

R0

Sax

Sv0

R1
Sax

Sv1

Wa1

Ra, Rv, Wv0

reset

Ra, Rv, Wv1

 reset

Wa1

Wa0

Wa0

Ra, Rv, Wa0

 reset

Initial state

1

2.1 2.2

2.3 2.4

Wv0

Wv1

Wv0,

Wv1

Wa0,

Wa1

Wa0,

Wa1

Wv0,

Wv1

Ra, Rv,

 reset

3. Fault behavioral block

R0

S0

W0, reset

R1

S1

R, W1, reset

W1

W0

R1

S0

R W0, reset

W1

Rx

Sx

R, reset

W0 W1

R

Figure 2. DFA for <0r0/0/1> fault.
Figure 3. Structure of coupling fault DFA.

Figure 4. Initial state and initial block of any coupling fault

DFA.

Ra, Rv, Wa1

 reset

1.Initial

state

User
Cross-Out

User
Cross-Out

User
Cross-Out

2.5.2 Fault behavioral block and fault

activation state
Shaded states {3.1, 3.2, 3.3, 3.4} in the figure 5 are present

in any coupling fault DFA. On the other hand states {3.5,

3.6} are intermediate states ensuring that fault will be

activated after a certain sequence of operations described in

the fault notation.

The bolded way leading from state 3.3 to FAS 4 corresponds

to the sequences of 0w1 and 1w0r0 from the fault notations.

If any other operation is applied, the sequence of fault

activating operations is being reset, thus the applied

operations leads to one of the four {3.1, 3.2, 3.3, 3.4} states.

Finally, read operation needs to be applied to FAS in order to

observe the fault.

3. APPLICATION

3.1. Converting DFA to Mealy state

machine
Introduced DFAs can be easily converted to Mealy state

machine (SM) by adding Ω = {-, 0 ,1}, and λ: Q x ∑ => Ω,

∀ q ∈ Q and ∀ a ∈ ∑, where Ω – output alphabet, λ –

output function, and λ on { wa0, wa1, wv0, wv1, reset }

returns “-”, and returns “0” or “1” on

rv - depending on R value of the state

ra – depending on Sa value of the state

3.2. Injecting faults via memory top level

design Verilog test bench
The proposed fault models can effectively be implemented

using System Verilog, without affecting the SoC design. The

only thing that is required for implementation of fault model

is the knowledge of memory module positioning in the SoC

hierarchy and the names of memory pins.

The fault models are positioned outside of SRAM memory

model, capturing memory data input, output and address

buses, write-enable (WE) pin and operating under the

memory clock frequency (figure 7). Fault module uses

Mealy SM for fault representation. Each fault module is

attached to a specific memory address, i.e. triggering the

fault state machine, based on address bus value. Applied

operation is being passed to fault module via WE pin. If it is

‘read’ operation, output bus value is being determined by

Mealy SM, if fault address is being passed via address bus,

and is determined by memory address bus otherwise.

3.3. Implementation
Each state of Mealy SM is modeled as a descriptor as shown

in figure 8 (example for single-cell faults).
Mealy SM is modeled as a table (array) of such descriptors, a

pointer to the table, two variables storing initial and final

states of Mealy SM. Such model is guaranteed to work with

O(1) access time if implemented in System Verilog.

Memory

Fault Model

Address bus,

Input bus,

WE pin

Clock Output bus

SoC

Design

Listening

to memory

pins Changing

output bus

value

2.1 2.2 2.3 2.4

3.1 3.2 3.3 3.4

Wv0

Wv1 Wv0
Wv1

Wa0 Wa1
Wa0 Wa1

3.1 3.2

3.3 3.4

3.5

3.6 4

Wv1 Wv1

Wa1

Wa0

Ra, Rv, Wv0, Wa0,

 reset

Wa1

Wa0

Ra, Rv, Wv0, Wa1,

 reset

Wa0

Wv0

Ra, Rv,

Wv1, Wa0,

 reset

Ra, Rv, Wv1, Wa1,

 reset

Wv0

Rv

Ra, Rv,

 Wv1, Wa1,

 reset

Wv1

Wv1
Ra, Wv0, Wa1,

 reset

Ra, Wv0, Wa1,

 reset

Wa0

Wa0

Wv0

Wa1

Rv

Fault activation state

State values:

3.1 - <R0, Sa0, Sv0>

3.2 - <R0, Sa1, Sv0>

3.3 - <R1, Sa0, Sv1>

3.4 - <R1, Sa1, Sv1>

3.5 - <R1, Sa1, Sv1>

3.6 - <R0, Sa1, Sv0>

4 - <R1, Sa1, Sv0>

 Figure 5. Fault behavioral block and final state of

<0w1; 1w0r0/0/1> fault DFA.

Figure 6. Connections between initialization block and fault

behavioral block for <0w1; 1w0r0/0/1> fault.

Figure 7. Fault Mealy SM modeled in RTL.

Figure 8. Mealy SM state descriptor for single-cell fault.

User
Cross-Out

User
Cross-Out

User
Cross-Out

User
Cross-Out

The flags of each descriptor are initial assigned with 0 value.

A flag of a descriptor is being set to 1 if corresponding

operation is being accepted by Mealy SM. That allows

monitoring of Mealy SM coverage during the simulation.

Here is an approach for implementing single-cell faults

with two always blocks in top-level test bench (assuming

read operation value can be observed to DATA_OUTPUT

bus on clock negedge, if operation is applied on clock

posedge):
always @(posedge `MEMORY_HIER_PATH.CLK)

begin

`MEMORY_HIER_PATH.ADDR is tracked. Reset operation

is called if address is being changed from the address of the fault
fault_cell_address.

 if(`MEMORY_HIER_PATH.ADDR == fault_cell_address)

 begin

Determining the operation based on value of

`MEMORY_HIER_PATH.WE pin. Value of write operation

is obtained from `MEMORY_HIER_PATH.DATA_INPUT.
Value of read operation is stored for using in the next always

block.

 end

end

always @(negedge `MEMORY_HIER_PATH.CLK)

begin

If read operation was applied, force stored read value on

`MEMORY_HIER_PATH.DATA_OUTPUT after a small delay
to ensure that race condition won’t occur.

end

4. FUTURE WORK
This paper offers test models for static and dynamic single-

cell and coupling faults. There are other type of faults to be

considered [9], such as linked fault. As it is shown in [10] all

known fault can be divided into fault families and

represented with periodicity table. Complete solution will be

extending the introduced DFA model to cover the periodicity

table.

5. CONCLUSION
An approach for modeling dynamic single-cell and coupling

faults via automata models was introduced in this paper. This

model was compared to other known models, and the

advantages were shown. An implementation was proposed,

that does not affect the simulation time. Based on structured

representation of the faults in the proposed model, it is

planned to extend the model to involve other known faults in

periodic manner.

REFERENCES
[1] A.J. van de Goor, “Testing Semiconductor Memories:

Theory and Practice”, pp. 45-54, 1991.

[2] Z. Al-Ars, A.J. Van de Goor, J. Braun, D. Richter “A

memory specific notation for fault modeling”, Proceedings

10th Asian Test Symposium, pp. 43-48, 2001.

[3] A.J. van de Goor and Z. Al-Ars, “Functional Fault

Models: A Formal Notation and Taxonomy”, In Proc. of

IEEE VLSI Test Symposium, pp. 281-289, 2000.

[4] G. Harutyunyan, G. Tshagharyan, V. Vardanian, Y.

Zorian, “Fault Modeling and Test Algorithm Creation

Strategy for FinFET-Based Memories”, IEEE 32nd VLSI

Test Symposium, 2014

[5] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P.

Prinetto, “Automatic March Tests Generation for Static and

Dynamic Faults in SRAMs”, Dipartimento di Automatica e

Informatica Politecnico di Torino, IEEE Proceedings of the

European Test Symposium, 2005

[6] Y. Zorian, S. Shoukourian, “Embedded-memory test and

repair: infrastructure IP for SoC yield”, IEEE Design & Test

of Computers, 2003

[7] John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman,

“Automata Theory, Languages, and Computation” 3rd

edition, pp. 45-46, 2006

[8] Luigi Dilillo, Patrick Girard, Serge Pravossoudovitch,

Arnaud Virazzel, “Efficient Test of Dynamic Read

Destructive Faults in SRAM Memories”, Laboratoire

d’Informatique, de Robotique et de Microélectronique de

Montpellier

[9] S. Hamdioui , Z. Al-Ars, A.J. van de Goor, M. Rodgers

, “Linked faults in random access memories: concept, fault

models, test algorithms, and industrial results”, IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems (Volume: 23, Issue: 5), 2004

[10] G. Harutyunyan, S. Shoukourian, V. Vardanian,

“Extending fault periodicity table for testing faults in

memories under 20nm”, Design & Test Symposium

(EWDTS), 2014

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Z.%20Al-Ars.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.A.J.%20Van%20de%20Goor.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.J.%20Braun.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.D.%20Richter.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7765
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7765
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.S.%20Hamdioui.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Z.%20Al-Ars.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.A.J.%20van%20de%20Goor.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M.%20Rodgers.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=28765
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.G.%20Harutyunyan.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7000956
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7000956

