
Migration of a Net in a Slicing Floorplan

 Armen Kostanyan

Yerevan State University
Yerevan, Armenia

e-mail: armko@ysu.am

Sona Kurazyan

American University of Armenia
Yerevan, Armenia

e-mail: selart66@gmail.com

ABSTRACT
Creation of a feasible floorplan is an important part of the
digital circuit physical design. The floorplan is defined as a
decomposition of a given rectangle into rectangular domains
determining the regions where blocks (i.e., separated parts of
the digital circuit) should be allocated. The quality of
floorplan is estimated based on the area of the enclosing
rectangle and the closeness of logically connected blocks to
each other.

We suggest an algorithm for migration of a net (that is, an
interconnected set of blocks) towards a target point by
keeping the floorplan enveloping rectangle. It is assumed
that the net involved in the migration is a high priority net
the desired disposition of which is determined a priori. The
suggested improvement is generally done by means of
degrading of less priority nets.

Keywords
Floorplanning, slicing tree, optimization

1. INTRODUCTION
The digital circuit physical design deals with realization of a
circuit in physical space to minimize both the occupied area
and the total wirelength. The physical design is divided into
placement, routing and compaction tasks [1].

Floorplaning is a generalization of the placement task
aiming to determine rectangular areas to optimally allocate
blocks (that is, the separated parts of a digital circuit) into
them. Construction of a feasible floorplan is typically
performed in two phases: at the beginning an initial
floorplan is constructed in greedy fashion and then it is
optimized considering additional circumstances.

The floorplan optimization is based on some representation
of its logical structure such as O-tree[2], B*-tree[3], etc. The
slicing floorplan is an important specific case of a general
type floorplan obtained by a series of successive dissections
of a given rectangle by horizontal or vertical lines. The
logical structure of a slicing floorplan can be represented by
a binary tree the leaves of which denote blocks, and internal
nodes specify horizontal and vertical cut lines [4].

During optimization phase the initial floorplan is
successively transformed so that at each step of
transformation the logical structure of current floorplan is
determined, the latter is transformed to another structure by
applying some operation, and finally the next floorplan is
reconstructed from the modified structure. This approach is
used in [5] for greedy optimization of a non-slicing floorplan
based on the O-tree representation. The same was done in
[6] for genetic optimization of a floorplan based on the B*-
tree representation. In [7] and [8] the simulated annealing
and the gradient optimizations are used for a slicing
floorplan based on the binary tree representation.

This paper focuses on the improvement of local
characteristics of a globally optimized slicing floorplan that
can be considered as the second phase of optimization. More
precisely, we consider how to concentrate a high priority set
of blocks around a target point. Such optimization generally
worsens the cumulative assessment of other nets of the
original floorplan.

2. MAIN CONCEPTS AND
DEFINITIONS
Slicing floorplan. Suppose we are given a set of block
identifiers denoted as Identifiers. We define a block domain
(or, simply, a domain) to be a triplet D=<id, width, height>,
where idIdentifiers, width and length are sizes in horizontal
and vertical directions, respectively. In addition, we define
an allocated domain to be a pair d=<D, pos>, where D is a
domain, pos=<x, y> is the Cartesian coordinates of the lower
left angle of D.

The slicing floorplan (or, simply, a floorplan) with pos,
width and height attributes is defined to be a set F of
allocated domains as follows:

 If d is an allocated domain, then F={d} is a floorplan

whose pos, width and height attributes coincide with the
corresponding attributes of d.

 If F1 and F2 are two floorplans without common block
identifiers such that

F2.pos= F1.pos+<0, F1.height)>,
F1.width= F2.width,

then F=F1F2 is also a floorplan (denoted as F=H(F1, F2))
with the following attributes:

F.pos= F1.pos,
F.width= F1.width (=F2.width),
F.height=F1.height + F2.height.

 If F1 and F2 are two floorplans without common block

identifiers such that
F2.pos= F1.pos+ <F1.width, 0>,

F1.height= F2.height,
then F=F1F2 is also a floorplan (denoted as F=V(F1,
F2)) with the following attributes:

F.pos= F1.pos,
F.width= F1.width + F2.width,

F.height= F1.height(=F2.height).

A floorplan is said to be trivial if it consists of a single
allocated domain; otherwise it is said to be non-trivial. Let
us denote by F=(F1, F2) the non-trivial floorplan
constructed from subfloorplans F1 and F2 with the use of the
dissection operation  which is either H or V.

Given a slicing floorplan F, we define a slicing tree of F
(denoted as sTree(F)) as a labeled 2-tree as it follows:

 If F is a trivial floorplan consisting of an allocated domain
d, then sTree(F) is a single tree vertex labeled by id(D).

 Else, if F=(F1, F2), then sTree(F) is a 2-tree whose root
is labeled by symbol  and whose left- and right- subtrees
of the root are sTree(F1) and sTree(F2), respectively.

Fig. 1 below presents a floorplan and its slicing tree.

The following claim follows from the definitions above.

Claim. Floorplan can uniquely be reconstructed based on the
set of domains, slicing tree and position.

Vector of gravity. The notion of the vector of gravity is used
to represent the disposition of domains of a specified net
considering their areas.

Let F be a floorplan and N be a set of domains. Define the
weight and the center of gravity of F (denoted as weight(F,
N) and centerOfGravity(F, N), respectively) as follows:

 If F is a trivial floorplan consisting of a single allocated

domain d=<D, pos>, then:
- If D is not from N, then

weight(F, N)=0,
centerOfGravity(F, N) is undefined;

- Else, if D is from N, then
weight(F, N) is the area of D,
centerOfGravity(F, N) is the geometrical center of d.

 Else, if F=(F1, F2) then:

- If weight(F1, N)= weight(F2, N)=0, then
weight(F, N)=0,
centerOfGravity(F, N) is undefined;

- Else, if weight(Fi, N)0, weight(F3-i, N)=0, then
weight(F, N)=weight(Fi, N),
centerOfGravity(F, N)=centerOfGravity(Fi, N),

(i=1, 2).

- Else, if weight(F1, N) 0 and weight(F2, N) 0, then
weight(F, N)= weight(F1, N) + weight(F2, N),
centerOfGravity(F, N) is the point on the segment
connecting the centers of gravity of F1 and F2 that
divides it into inverse proportion to weight(F1, N) and
weight(F2, N).

Given a floorplan F and a set of domains N, define the vector
of gravity of F to be the pair <centerOfGravity(F, N),
weight(F, N)>.

Swap condition. Let F=(F1, F2) be a non-trivial floorplan,
N be a set of domains, p be a point on the plane. Define
swapCondition(F, N, p) to be true, iff swapping F1 with F2
makes the center of gravity of the resulting floorplan closer
to p.

Net migration problem. Given a floorplan F, a set
Ndomains(F) of domains and a target point p, we define
the net migration problem to be the problem of moving the
elements of N towards p as close as possible by keeping the
enveloping rectangle of F. We shall consider a solution to
this problem based on making optimizing swaps at inner
nodes of sTree(F).

3. MOVING A NET TO A TARGET
POINT
Our approach to solve the net migration problem consists of
two phases. During the first phase, we traverse the slicing
tree of floorplan in postorder and make swaps at inner nodes,
if the swap condition holds. During the second phase, we
make the same by traversing the slicing tree in preorder.

As an illustration, consider the floorplan in Fig. 2 consisting
of domains <a, 1, 1>, <b, 1, 1>, <c, 3, 2>, <d, 2, 2>, <e, 2,
1>, <f, 2, 1>. Suppose we need to concentrate the domains a,
d and f around the specified target point:

The first (upward) phase of the algorithm transforms the
slicing tree of the floorplan in Fig. 2 as follows:

b)

j b

V

H

V

H
V

g

i
h

H H

V f
d e

V c
a

a)

a b

c f

d e

j

h

i
g

Fig. 1.Example. a) Slicing floorplan; b) Slicing tree.

Fig. 2. Example: a) Slicing floorplan, b) Slicing tree.

H

H

b

c

V

a

V

d H

f e

b)

a)

c

a

b

d

e

f

target
point

Fig. 3. Transformation of the slicing tree
during upward optimization.

3-rd
H d H

1-st 2-nd

4-th

H

b

c

V

a

V

f e

The floorplan transformation described in Fig. 3 results in
upward optimized floorplan below:

The second (downward) phase of the algorithm transforms
the slicing tree of the upward optimized floorplan in Fig. 4
as follows:

Finally, the floorplan transformation described in Fig. 5
results in downward optimized floorplan in Fig. 6:

It is important to note that subsequent upward and downward
passes through the resulting floorplan will no longer
optimize it. Indeed, no swaps will be done during the upward
pass next to the downward one, as otherwise these swaps
were to be made at the previous pass. It follows from this
that the subsequent downward pass will also do nothing.

Fig. 7 presents a “good” and a “bad” cases of running the
algorithm:

4. ANALYSIS
Let us estimate the time complexity of net migration
procedure assuming that there are n domains in F and k
domains in N. During each optimization phase, we
successively visit nodes of sTree(F) spending (1) time at
each, except time needed for deciding whether the domain at
a leaf node belongs to N. Considering that sTree(F) consists
of 2n-1 nodes and assuming that N is represented by means
of a structure allowing to carry out (log k)-time search, we
obtain (nlog k) time complexity for the whole procedure.

5. CONCLUSION
In this paper, an approximate algorithm for migration of a
net towards a target point inside the slicing floorplan is
suggested. It is assumed that the net involved in the
migration is a high priority net the desired disposition of
which is determined by an expert after automatic
construction of an entire floorplan. The suggested
improvement of a high priority net is generally done due to
degrading of less priority nets.

REFERENCES
[1] S. M. Sait, H. Youseff, “VLSI Physical Design

Automation: Theory and Practice”, World Scientific
publishing, 2004.

[2] P.-N. Guo, C.-K. Cheng,T. Yoshimura, “An O-tree
representation of non-slicing floorplan and its
applications”, Proc. of ACM/IEEE Design Automation
Conference, pp.268-273, 1999.

Fig. 7. Different cases of running the algorithm.

Fig. 4. The upward optimization result:
a) Slicing floorplan; b) Slicing tree.

a)

c

a

b

d

e

f

target
point

c

b)
H

b

V

d

V

H

a

H

e f

Fig. 6. The downward optimization result:
a) Slicing floorplan, b) Slicing tree.

a)

c

a

b

target
point

d
e

f

b)

V

d c

V

H

b

H

f e

H

a

V

d c

V

H

a

H

e f

H

b

1-st

2-nd 3-rd

Fig. 5. Transformation of the slicing tree
during upward optimization.

[3] Y. Chung, Y Chang, G. Wu, S. Wu, “B*-tree : A new
representation for non-slicing floorplans”, Proc. of
Design Automation Conference, pp. 458-463, 2000.

[4] R. H. J. M. Otten, “Layout structures”, Proc. of IEEE
Large Scale Systems Symposium, pp. 96-99, 1982.

[5] M. Tang, “A New Greedy Algorithm for VLSI Floorplan
Optimization”, Proc. of the International Conf. on
Computer Science and Software Engineering, pp. 1126-
1129, 2008.

[6] T. Singha, H.S. Dutta, M. De, “Optimization of Floor-
planning using Genetic Algorithm”, Published by
Elsevier Ltd., 2012.

[7] D. F. Wong, C. L. Liu, “A new algorithm for floorplan
design”, Proc. of ACM/IEEE Design Automation
Conference, pp. 101-107, June 1986.

[8] A. Kostanyan, Kh.Hayrapetyan, “Method of Slicing
Floorplan Optimization “, Proc. of Computer Science &
Information Technologies (CSIT) Conference, Yerevan,
Armenia, pp. 506-510, 2005.

	b)
	H
	V
	V

	a)
	Fig. 1.Example. a) Slicing floorplan; b) Slicing tree.
	Fig. 2. Example: a) Slicing floorplan, b) Slicing tree.
	H

	Fig. 3. Transformation of the slicing tree
	during upward optimization.
	3-rd
	1-st
	2-nd
	4-th
	H

	Fig. 4. The upward optimization result:
	a) Slicing floorplan; b) Slicing tree.
	H
	H
	1-st
	2-nd
	3-rd

	Fig. 5. Transformation of the slicing tree
	during upward optimization.
	Fig. 6. The downward optimization result:
	a) Slicing floorplan, b) Slicing tree.
	H

	Fig. 7. Different cases of running the algorithm.

