Dynamic Symbolic Execution of Java Programs Using JNI

Sergey Vartanov
Institute for System Programming of the Russian Academy of Sciences,
Lomonosov Moscow State University
Moscow, Russia

e-mail: svartanov@ispras.ru

ABSTRACT

For the sake of better performance, platform-specific
facilities support, or the use of legacy code, Java appli-
cations may use JNI (Java Native Interface) to call na-
tive functions. We present an approach to perform dy-
namic symbolic execution of a Java program that tracks
tainted data flow through Java bytecode and native code
of shared libraries. We propose a tool based on modified
virtual machine and static binary code instrumentation.
This allows us to collect path constraints for both byte-
code and binary code execution but avoid redundant
processing of virtual machine own code. Modified path
constraints are checked for their satisfiability in order
to generate new inputs and execute new paths (to cover
new basic blocks of target program). We describe initial
experiments with our implementation based on Avian
virtual machine and Dyninst.

Keywords
dynamic symbolic analysis, Java native interface, Java
bytecode, path alternation

1. INTRODUCTION

As software becomes more complicated, it needs pro-
gram analysis tools to control efficiency and detect de-
fects. One of these approaches is dynamic symbolic exe-
cution (sometimes referred to as concolic execution). It
allows us to construct new input data in order to cover
new execution paths of the target program.

Java is one of the most popular programming lan-
guages. Programs written in the Java language are
usually translated into Java bytecode, which is inter-
preted by a Java virtual machine. This approach al-
lows us to add a set of convenient features into the
language, e.g., automatic memory management, which
reduces or fully eliminates such kind of defects as mem-
ory leaks and buffer overflows. However, it may signifi-
cantly decrease the application performance in compari-
son to well-designed analogous program written in com-
piled languages. Sometimes, it is convenient to utilize
features of both compilation-based and interpretation-
based approaches within one software system. Java na-
tive interface (JNI) was created as a part of Java virtual
machine specification to cover such issues. In this pa-
per we consider approaches to perform comprehensive
dynamic symbolic execution (DSE) of Java programs,
which use JNI. We consider DSE for both Java byte-
code and native code, as well as JNI mechanisms of
their connection.

© 00 N O W N

== =
N o= O

The remainder of the paper is organized as follows. Sec-
tion 2 describes an approach to dynamic symbolic exe-
cution and highlights Java and native code connection
issues. Section 3 is about the technical details of our im-
plementation. We describe initial experiments in Sec-
tion 4, review future work in Section 5 and conclude
with Section 6.

2. DYNAMIC SYMBOLIC EXECUTION

Dynamic symbolic execution is based on the idea of path
alternation. For every given execution path one can
choose a branch node of that path and try to direct ex-
ecution through an alternative branch. The only way to
change program execution and preserve its functional-
ity is to modify input data. To do so one should collect
path constraints leading to target branch, invert branch
condition constraint, and, if modified constraint is sat-
isfiable, construct a new input based on this constraint.
To create constraints, that fully designate an execution
path and allow us to obtain dependency between the ar-
bitrary branch condition and the input data, we should
handle the all instructions, which could affect data and
control flow. Constraints are usually collected in the
form of satisfiability modulo theories (SMT) formulae.
We use SMT solvers to check constraint satisfiability.

2.1 Bytecode and Native Code Connection

Many of dynamic symbolic execution tools that analyze
Java programs track only bytecode instructions to gen-
erate constraints. Thus, any control and data flow de-
pendencies generated by native code are not checked by
these tools. This problem can be illustrated on a simple
example (see Listing 1 for the Java code and Listing 2
for the C code). Branch condition (sum == 5) depends
on data flow through native function. If analysis, based
on dynamic symbolic execution, does not take into ac-
count the native code, it has a very small chance to pick
up the needed file content (sum of two bytes should be
equal to 5) and will miss the whole program part from
line 12 of Java code.

Listing 1. Java part of example
package test;
import test.Util;

public class Test {

public static void

main(String[] args) {
byte[] buffer = Util.read(2);
int i = (int) buffer [0];
int j = (int) buffer[1];
int sum = nativeSum(i, j);
if (sum == 5) {

// Do something

13
14
15
16
17
18
19

0 N O Ul W N

|
|
|
|
|
|
|
|

initial input

Execution

instrumented
dynamic
libraries

I

\

I

I

I

I

I

I

I

I

. modified instruction I

DSE engine | Avian VM processor :
I

| |
I

. \ Triton :

new input | |

! I

I Java |

: symbolic Capstone |

i I

solver : engme i I

I

: symbolic symbolic :

I Java memory x86 memory |

: model model I

‘ |

! J

SMT-LIB 2 path condition J

Figure 1. Tool diagram

} else {
// Do something else
}
}
public static native int
nativeSum(int i, int j);

Listing 2. C part of example
#include <jni.h>

JNIEXPORT jint JNICALL
Java_test_Test_nativeSum(
JNIEnv* env, jclass class_,
jint i, jint j) {
return i + j;

The described problem could be solved using a binary
analysis. Since Java virtual machine is a program it-
self, the binary dynamic symbolic execution could be
applied to the entire system including virtual machine
and libraries. But in such a case we will deal with a
large amount of instructions of Java virtual machine
code (class loading, memory management, bytecode in-
terpretation, etc.) as well as target program and dy-
namic libraries instructions.

2.2 Approach

We propose to perform a combined dynamic symbolic
execution of Java bytecode and native code in the fol-
lowing way. To handle native code instructions we will
use static binary instrumentation of dynamically loaded
libraries. For Java bytecode instruction handling and
taint data flow propagating through JNI we will use a
virtual machine modification. The result of the instru-
mented program execution should include a comprehen-
sive path constraint in the form of a single SM'T formula.
The described approach allows us to provide analysis in
the absence of source code of the target program.

2.3 Related Work

There are many program analysis tools for Java (e.g.,
Java PathFinder [1], GlassTT [2], Javana [3]). Such
Java PathFinder plugins as Symbolic PathFinder [4]
and JDart [5] provide dynamic symbolic execution of
Java bytecode. To the best of our knowledge, these tools
have native code support only for custom Java models
of binary code. In other words, they do not provide
dynamic symbolic execution of arbitrary binary code
of native methods that called from Java code through
JNIL

3. IMPLEMENTATION

In order to provide the proof of concept, we have im-
plemented a tool for dynamic symbolic execution of
JNI programs. It consists of the following components
(see Figure 1): (1) dynamic symbolic execution engine,
(2) modified virtual machine, (3) static binary instru-
mentation system, (4) symbolic and taint engines for
Java and native code, (5) solving system.

3.1 Java Part

To handle Java bytecode we have modified a lightweight
Java virtual machine Avian [6] and have implemented
a Java symbolic engine library, that provides bytecode
instruction processing and path constraint generation.
Java virtual machine modifications include:

e bytecode instruction processing and path con-
straint collecting,

e argument marshalling mechanism modification to
support taint data flow propagation through na-
tive function call from Java code,

e modification of JNI function implementation to
support taint data flow propagation from native
code to Java,

e processing of instructions and methods, that could
be sources of tainted data.

virtual machine: { (declare-fun x_1 () (_ BitVec 8))

two bytes of the input file declaration

Java bytecode execution:
reading two bytes from the input file using readBytes method
of java.io.FileInputStream and convert them to integer type

virtual machine:
marshalling

binary code execution:
addition of two integers

virtual machine:
demarshalling

Java bytecode execution:
branch condition

(declare-fun x_2 () (_ BitVec 8))

(declare-fun x_3 () (_ BitVec 32))
(assert (= x_3 ((_ sign_extend 24) x_1)))
(declare-fun x_4 () (_ BitVec 32))
(assert (= x_4 ((_ sign_extend 24) x_2)))

(declare-fun ref!l () (_ BitVec 32))
(assert (= ref!l x_3))
(declare-fun ref!2 () (_ BitVec 32))
(assert (= ref!2 x_4))

Some asserts that imply ref!48 = ref!1
and ref!50 = ref!2 are skipped.

(declare-fun ref!52 () (_ BitVec 64))
(assert (= ref!52 ((_ zero_extend 32)
(bvadd
((_ extract 31 0) ref!50)
((_ extract 31 0) ref!48)))))

(declare-fun x_5 () (_ BitVec 32))
(declare-fun x_6 () (_ BitVec 32))

(assert (= x_6 ((_ extract 31 0) ref!52)))
(assert (= x_6 x_5))

T (assert (mot (= x_5 #x00000005)))

Figure 2. Combined path constraint in the format of SMT-LIB 2

In Avian virtual machine we have modified the func-
tion argument marshalling mechanism by informing Tri-
ton [7] (see below) that the registers and memory cells
contain tainted function arguments and correspondence
between them and symbolic variables. This mechanism
is used to connect the tainted data flow of Java bytecode
with the tainted data flow of native code. Java symbolic
engine consists of a bytecode instruction processor and a
symbolic Java memory model, that contains a symbolic
analogue of stack, local variables, arrays, and fields.

3.2 Binary Instrumentation

For instrumentation of binary code we have created a
small tool, that uses a binary rewriting mechanism of
the powerful Dyninst [8] framework. Dyninst allows us
to define instrumentation points as follows: points be-
fore every instruction (except some instructions, such
as NOP or unconditional jumps) of native library, that
could be loaded by virtual machine during target appli-
cation execution. At the described points the tool pro-
cesses the following an instruction opcode and inserts
instrumentation code. That code extracts the concrete
values of registers and memory cells, that could be influ-
enced by the instruction, and inserts a call of instruction
handler (see below). Such kind of heavy-weight instru-
mentation introduces a huge overhead, but allows us to
achieve the necessary level of data flow tracking accu-
racy.

3.3 Binary Part

To handle native code instructions we use Triton [7].
It is a tool for symbolic execution of binary code. It
disassembles the binary code using Capstone [9], sup-
ports taint data tracking and symbolic expression con-
struction based on a comprehensive memory model for
x86 and x86-64. Instruction handler, mentioned above,
passes information about instruction and concrete val-
ues of memory cells and registers to Triton. As a re-
sult, Triton generates path condition in the format of
SMT-LIB 2. This format is in widespread use and is

supported by almost all modern SMT solvers, such as
Z3 [10]. One slight modification of Triton allows us to
get a path condition with specific markers for condi-
tional branch assertions.

3.4 Constraints

As a result of target program execution, we get compre-
hensive path constraint in the form of one conjunction
over a set of Boolean variables. Each conjunct repre-
sents a condition, that corresponds to: (1) Java byte-
code instruction, (2) native instruction (x86), (3) mar-
shalling and demarshalling, or (4) input data reading
function call.

For the example mentioned above (see Listings 1 and
2), we will get a combined path constraint presented in
Figure 2.

3.5 Dynamic Symbolic Execution Engine

and Solving

Dynamic symbolic execution engine is the main part of
the tool. It manages other components execution and
stores fundamental analysis artefacts: path conditions
and inputs. Firstly, the engine executes instrumentator
based on Dyninst to instrument the list of specified na-
tive libraries. After the static instrumentation phase,
it starts iterative analysis loop depicted in Figure 1.
The main analysis loop consists of two major phases:
(1) path constraint generation and (2) input generation.

In the first phase the engine selects one of the in-
puts from the storage and executes the modified Avian
virtual machine on the given Java bytecode with the
use of instrumented native libraries. Generated path
constraint is collected in the storage along with path
qualifiers, such as code coverage, the number of exe-
cuted instructions, and the number of tainted condi-
tional branches.

In the second phase the engine selects one of the path

Project VectAlign flexmark-java javax.xml jsoup
Executions 17639 13343 437 6626
Unique paths 16561 12970 212 5572
SAT rate 96.49 % 98.81 % 58.09 % 99.95 %
Maximum number of branch conditions 516 178 100152 99
Maximum number of assertions per query 1005 325 200279 166
Average number of assertions per query 269.9 93.83 85869.26 51.90
Solving time 34.41 % 4.50 % 61.61 % 8.71 %
Execution time 54.18 % 90.35 % 14.63 % 88.52 %
Native method calls per execution 396.61 1714.48 946.43 5023.52

Table 1. Experimental results

constraints from the storage (path conditions and inputs
are selected according to strategies and heuristics, that
could be configured by the user: breadth-first, depth-
first search, coverage heuristics), chooses conditional
branches, and inverts them. In the example, there is
a single branch condition assertion. It was true on the
previous execution, therefore we should use an inver-
sion: (assert (mot (mot (= x_5 x00000005)))).

Then the engine executes SMT solver. The solver is
used to check satisfiability of the given constraint and to
construct the models (set of concrete variable values) of
the satisfiable constraint. The models are used to create
new input data, that leads to a corresponding execution
path. For these ends we use Z3 [10].

4. EXPERIMENTAL RESULTS

We have tested our experimental tool on a set of small
artificial programs and several real-world projects to
evaluate how many unique paths can be handled using
such a heavy-weight instrumentation. For all experi-
ments, we used Ubuntu machine with a 3.3 GHz Intel
Core i5 and 8 GB RAM. We used one or two input files
as tainted data sources and run analysis with a time cap
of one hour.

VectAlign processes the string representation of two
SVG paths and aligns them in order to allow morphing
animations. flexmark-java is a Java implementation
of Markdown parser, jsoup is a Java HTML Parser,
and we also use XML parser from javax.xml package.
Table 1 gives our experimental results. The number
of generated unique paths is less than the number of
executions due to the unaccounted implicit data flows.
SAT rate is the ratio of sat solver answers, to all solver
queries (other cases are unsat, unknown answers, and
timeout). Solving time and execution time percentage
show how much time we spend in path condition solving
and target program execution, respectively.

S. FUTURE WORK

Dynamic symbolic execution is widely used along with
different dynamic analysis techniques to solve a variety
of problems, e.g., test case generation, defect detection,
reverse engineering, and profiling. We are planning to
use the described approach for detecting unhandled ex-
ceptions in Java code, as well as crashes in native code.

6. CONCLUSION

The main contribution of this work is an approach
to combine dynamic symbolic execution of Java byte-
code and native code based on virtual machine mod-
ification and static binary instrumentation. We show

that whereas Java bytecode and native code have differ-
ent behavior and require different instrumentation tech-
niques, there is an approach to propagate tainted data
and symbolic variables through foreign function calls.

REFERENCES

[1] W. Visser, C. S. Pasareanu, S. Khurshid: Test
Input Generation with Java PathFinder. SIGSOFT
Softw. Eng. Notes, pp. 97-107, 2004.

[2] R. Mller, C. Lembeck, H. Kuche: A Symbolic Java
Virtual Machine for Test Case Generation. 2004.

[3] J. Maebe, D. Buytaert, L. Eeckhout, K. De
Bosschere: Javana: A System for Building
Customized Java Program Analysis Tools.
SIGPLAN Not., pp. 153-168, 2006.

[4] C. S. Pasdreanu, N. Rungta: Symbolic PathFinder:
Symbolic Execution of Java Bytecode. Proc. of the
IEEE/ACM Int. Conf. on Aut. Softw. Eng., pp.
179-180, 2010.

[5] K. Luckow, M. Dimjasevié¢, D. Giannakopoulou, F.
Howar, M. Isberner, T. Kahsai, Z. Rakamari¢, V.
Raman: JDart: A Dynamic Symbolic Analysis
Framework. , pp. 442-459, 2016.

[6] Avian. A lightweight alternative to Java.
https://readytalk.github.io/avian/

[7] F. Saudel, J. Salwan: Triton: A Dynamic Symbolic
Execution Framework. Symp. sur la séc. des tech. de
linf. et des com., SSTIC, France, Rennes, June 3-5
2015, pp. 31-54, 2015.

[8] B. Buck, J. K. Hollingsworth: An API for Runtime
Code Patching. Int. J. High Perform. Comput.
Appl., pp. 317-329, 2000.

[9] Capstone. The Ultimate Disassembler.
http://www.capstone-engine.org/

[10] L. De Moura, N. Bjgrner: Z3: An Efficient SMT
Solver. Proc. of the Theory and Prac. of Softw., 1/th
TACAS, pp. 337340, 2008.

