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ABSTRACT 
From a practical point of view the codes over rings Z2m or 
Z2m+1 are interesting, because they can be used in QAM 
(Quadrature amplitude modulation) schemes. Until today we 
only know codes with 4 parity check symbols, which have a 
limited length C (N, N-4). In this paper a method allowing to 
construct  C(2N, 2N-6) double ±1 error correcting codes 
over rings Zm from the given C(N, N-4) double ±1 error 
correcting codes over rings Zm is developed by adding only 
two extra parity check symbols. 
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1. INTRODUCTION 

Errors happening in the channel are basically 
asymmetrical; they also have a limited magnitude and this 
effect is particularly applicable to flash memories. There 
have been a couple of papers regarding optimal ±1 single 
error correcting codes over alphabet Zm [1, 2]. Also there are 
many linear codes capable to correct up to two errors of type 
±1 for different alphabets which have been found by 
computer search, but they are not optimal. The optimality 
criteria for linear codes over the fixed ring  Zm  can be 
considered in two ways. First of all, recall that the code of 
the length n is optimal-1 if it has a minimum possible 
number of parity check symbols. Secondly, optimality-2 
criteria for the code is that for a given number of parity 
check symbols, it has a maximum possible length. The linear 
code (12, 8) correcting double errors over the ring Z5 of 
value ±1 was presented in [3], satisfies the optimality criteria 
-1: 

 

this code was given  by the parity check matrix H, which has 
8 information and 4 parity check symbols. Other optimal 
codes over the rings Z7 and Z9 correcting double errors of 
value ±1 was presented in [4]. There are code (16, 12) over 
the ring Z7, 

 

and code (20, 16) over the ring Z9: 

 

At this point we do not know any codes that satisfy the 
optimality criteria-2. In [3] a method is presented how to 
compare two code constructions over different size of 
alphabets when both satisfy the optimality–1 criteria. Two 
factors are considered, namely:  

• the first factor should be the rate of the code i.e., 
the ratio of the number of information symbols 
over the length of the code;  

• the second factor should be the ratio between the 
number of possible amplitude errors corrected by 
the code over the size of alphabet minus 1, which 
corresponds to the number of all possible 
amplitude errors.  

For the code over ring  Z5 mentioned above the product is: 
(8/12) * (2/4) = 0.3333. For the codes over the rings Z7 and  
Z9 the products will be (12/16) * (2/6) = 0.25 for the code 
over  Z7  and (16/20) * (2/8) = 0.2 for  Z9 . These products 
are a little bit smaller than for the code (12, 8) over ring Z5 , 
although there are much better comparisons with the codes 
over Z16 and Z128  in [2,5,6].  
        In this paper  constructions of codes C (2N, 2N-6)    are 
presented, which are based on the previous optimal codes  
C (N, N-4). We can construct codes which are 2 times longer 
than C (N, N-4) optimal codes, by adding only 2 parity 
check symbols. 
 
2. CONSTRUCTION OF C(2N,2N-6) 
CODES  
 In this section we will describe a method, which allows us 
to construct new codes with a double length at the expense 
of just two parity check symbols. We will assume that we 
have at our disposal (N, N-4) double error correcting code 
like the codes presented in Paragraph 1 in this paper as well 
as in [3,4]. Using the method, which will be described 
below, we can construct codes of length 2N with 6 parity 
check symbols C (2N, 2N-6). Further in this paper by codes 
we mean a double error correcting code of the type ±1. 
   Let C (N, N-4) be a code over ring Zm . Our construction 
of a new code will have a parity check matrix with 6 rows 
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and a 2N columns where the first 4 rows will be just a 
repetition of 4 rows of the code C (N, N-4). Now we will 
describe how we add 2 additional rows to the parity check 
matrix. The first N columns and the last N columns of two 
additional rows will be referred to as group 1 and a group 2, 
respectively. In the first row of group 1 we put integer 2 
repeated n times then integer 1 repeated n times and then    

(N - 2n) times any integer x from   Zn . In the second row of 
the group 1 we put all integers from Zn {0, 1 ,…, n-1} 
repeated twice and then the first (N-2n) elements of    
{0,1,…, n-1}. Consequently, in the first row of group 2 we 
put the second row of group 1, and in the second row of 
group 2 accordingly we put integers 3 and 4 repeated n 
times, and in the rest of positions the same integer  x  from 
group 1. Note that an integer x should differ from (1, 2, 3, 4) 
and must satisfy the condition    ((x + x ≠ 1 (mod n)), 
Now we can prove the following theorem. 
 
Theorem 1: For a given C (N, N-4) code over ring  Zn   
correcting double ±1 errors, it is possible to construct a 
code with 6 parity check symbols of a length C (2N, 2N-6) 
correcting ±1 double errors. 
Proof. In order to prove this theorem it must be shown that 
all corresponding syndromes resulting from operations ±1  
between all columns of both groups should be all different. 

Let us split all columns of the group 1 into 3 subgroups, 
namely the first subgroup (subgroup 1.1) contains the first 
columns of group 1, the first component of which is 2, 
starting from the left, the second subgroup (subgroup 1.2) 
contains next n columns, the first component of which is 1, 
and the third subgroup (subgroup 1.3) contains the last 
columns with x. Accordingly, we can do the same with 
columns of group 2 and split them into three subgroups (2.1, 
2.2 and 2.3) . We need to consider only those cases, when 
the first four components have the same syndromes. We will 
demonstrate the proof for the case, when the first error has 
an upward direction (+1), and the second - downward (-1). 
Let us perform the proof by 3 cases: 
1)  Let’s suppose that two errors occurred in the first group. 
Because the both parts of parity check matrix H consist of 
the same code in the first 4 rows, we do not know in which 
part the errors occur: whether in the first part of matrix H or 
in the second one. We can check it using the next 2 rows. 
There can be only 3 possible subcases: 
   1.1) If errors are in subgroup 1.1 the first position will 
always be 0, otherwise in group 2 it cannot be 0 (due to the 
property of the set {0,1,…, n-1}), and the syndromes will be  
different. 
   1.2) If one error occurs in subgroup 1.1 and the second in 
subgroup 1.2 in group 1 the first position will be 1, but in 

group 2 the second position will be -1, and the syndromes 
will always be different, because we have the same 
components in two other positions (the second row of group 
1 and the first row of group 2 are the same).      
   1.3) If one of the errors occurs in subgroup 1.3, then if next 
is in subgroup 1.1 resulting syndromes will be different, 
because in subgroup 1.1 the first position is 2 and in 
subgroup 2.1 the second position is 3, but we have the same 
components as in subgroups 1.3 and 2.3.  Like the case b) 
the other two components of the syndrome always will be 
the same (the second row of group 1 and the first row of 
group 2 are the same). If the second error occurs in subgroup 
1.2(2.2) the way of the proof is the same.  Thus, the first case 
of the proof is complete. 
2) Let one error occur in group 1 and the second in group 2. 
We need to check whether both errors are in the same group 
or not. Again there can be 3 possible subcases: 
   2.1) Let an error occur in subgroup 1.1 and second error in 
subgroup 2.1. As the first four components of matrix H are 
in these subgroups we have the same columns, the errors 
might be in the same subgroup. How can we distinguish 
between  these cases?  If  both of them occur in subgroup 
1.1, then the first component will be 0, otherwise, in our case 
0 can be only with column 3 of subgroup 2.1. In this case, in 
the third column of subgroup 1.1 the second position is 2, 

and in the same column of subgroup 2.1 it is 3, consequently 
the syndromes will be different (if both of them occur in 
subgroup 2.1 the proof is the same(the only difference is that 
the second component will be 0 ). 
  2.2) Let one error occur in subgroup 1.1 and the second in 
subgroup 2.2. If both errors occur in group 1, then the first 
component  will be 1, in our case 1 can be only with column 
2 of subgroup 2.2, here the second component is 4, but in 
subgroup 1.2 it is 1, consequently the syndromes will be 
different. If both of them occur in group 2, then the second 
component will be -1, in our case -1 can be only with 
column 4 of subgroup 1.1, here the first component is 2, but 
in subgroup 2.1 it is 3, and syndromes will be different. (For 
the case when errors occur in subgroup 2.1 and subgroup 1.2 
the way of proof is the same).  
   2.3) Let one error occur in subgroup 1.1 or in subgroup 1.2 
and the second in subgroup 2.3. If both errors occur in group 
1(subgroup 1.3) the resulting syndromes will be different, 
because in subgroups 1.3 and 2.3 the corresponding rows are 
swapped like  and . 

Consequently, when we subtract them from the same 
subgroup 1.1 or 1.2 the resulting syndromes will be different. 
(For the case when errors occur in subgroup 1.3 and in 
subgroups 2.1 or 2.2 the way of proof is the same). Thus, the 
second case of the proof is complete. 

Group 1                                       Group 2 
                                  C (N, N - 4)                                               C (N, N - 4) 
                                                                

 



3) In this case both of the errors occur in the same columns 
of different groups.  Accordingly, the first four components 
of the syndromes will be (0 0 0 0). In this case the number of 
all possible syndromes will be 2N .  Due to the selection of 
last two rows of matrix (group 1 and group 2), it can be 
shown that all 2N syndromes will be different. In this case 
the difference between the same columns for the first two 
subgroups of groups 1 and 2 will be if the second element of 
the last column is the same first elements will be different by 
two, while the difference between the same columns in the 
corresponding third subgroups will be   and will be 

different for all i’s unless 2x ≠1 (mod n) - which is the 
condition for x. This analysis completes the proof of the 
theorem. 
 
3. CONCLUSION  
In this paper a  construction method of C(2N, 2N-6) double 
±1 error correcting codes over rings Zm based on C(N, N-4) 
double ±1 error correcting codes over rings Zm is developed. 
This technique will allow to construct codes with higher 
rates.
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Here we will show some results, which we have gotten using 
the method described by Theorem 1:  

 

 

 
Example 1  
The code (24, 18) correcting double ±1 errors, given by parity check matrix H5  was resulted from the optimal code (12, 8) 
over ring Z5 by adding 2 parity check symbols: 
     
 

           
 

         

   

 

Example 2 
The code (32, 26) correcting double ±1 errors, given by parity check matrix H7 was resulted from the optimal code (16, 12)  
over ring  Z7  by  adding 2 parity check symbols: 
 

 
                    

                       

                    Example 3 
            And lastly, the code (40, 34) correcting double ±1 errors, given by parity check matrix H9 was resulted from  
                           the optimal code  (20, 16) over ring Z9 by adding 2 parity check symbols: 
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