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ABSTRACT 
Deep learning that jointly studies and extracts features is 
very promising for steganalysis. In this article, we design a 
simple but effective Multi-column Convolutional Neural 
Network (MCNN) based on steganalysis architecture for 
images. The proposed MCNN architecture allows the input 
image to be of arbitrary size or resolution. In particular, by 
utilizing filters with receptive fields of different sizes, the 
features learned by each column CNN are adaptive to 
variations in payloads. Comprehensive experiments on 
standard dataset show that MCNN model can detect the state 
of arts steganographic algorithms at a high accuracy. It also 
outperforms several recently proposed CNN-based 
steganalyzers in conditions of the same embedding key stego 
and cover-source mismatch scenarios. 
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1. INTRODUCTION 
The most current steganalysis frameworks involve a large 
number of techniques for feature extraction and 
classification. The objective of the feature extraction is to 
capture as much stego information as possible. Many image 
features have been proposed such as Rich Models (RM) for 
the spatial domain [1] and JPEG one [2].  

As a state-of-the-art classification method, deep learning 
has been receiving a continuously increasing attention in the 
past years. The main advantage of deep learning is the 
automatic extraction of the most relevant high-level features 
of the input data to improve the learning of the targeted task 
[3].  

In fact, a CNN-based steganalyzer makes it possible to 
automatically unify feature extraction and classification steps 
in one unique architecture without a prior feature selection. 
The first CNN-based steganalysis experiment [4], which 
applied the stacked convolutional auto-encoders, have not 
reached accuracy level similar to the one given by SRM 
steganalysis. Further woks [5, 6] succeeded to improve the 
performance in the context of the “same embedding key” 
scenario, which resulted in weakening of security for 
embedding several messages with the same key. Even if 
these successive works have shown the advantages of CNN-
based steganalysis, some limitations have still to be 
overcome: processing varisized images and with different 
payload values (smaller ones). 

In this paper, a Multi-Column Convolutional Neural 
Network (MCNN) based steganalyzer is designed to improve 
the steganlysis performance. Moreover, our proposal aims at 
being more general and at overcoming the limitations noted 
previously. More specifically, contributions of this paper are 
summarized as follows: 

Firstly, the key idea of the proposed MCNN framework is 
the use of three columns filters with receptive fields of 
different sizes (large, medium, small) so that the overall 
MCNN framework is robust to different stego field. 

Secondly, a convolution layer the filter size of which is 
1×1 is used before the fully connected layer. Therefore, the 
input image can be of arbitrary size so that the proposed 
method is adaptive to large variation in stego image size. 

 
2. RELATED WORKS 
The deep learning-based steganalyzer has become a 
breakthrough technology which outperforms conventional 
steganalysis methods since the first stacked convolutional 
auto-encoders structure steganalyer [4].  

In 2015, Qian et al. [5] proposed a CNN architecture 
consisting of 5 convolutional layers followed by three fully 
connected layers: two hidden layers of 128 ReLU neurons 
each and one output layer of 2 softmax neurons. Rather than 
directly process the input image, this CNN works on a 
252×252 high-pass filtered image issued by a 5×5 kernel. 
The experiments showed that the designed CNN structure 
was only slightly outperformed by state-of-the-art SRM-
based steganalyzers. 

In 2016, Pibre et al. [6] investigated Qian’s work and 
improved the detection performance in the scenario of 
reusing the same embedding key for different images. They 
designed a CNN with fewer but larger layers including 2 
layers with 64 convolution kernels in the first layer and 16 
kernels in the seconde one. The experiments showed that the 
proposed method was able to reduce the detection error by 
more than 16% in comparison with the SRM-based 
steganalyzers in case of S-UNIWARD at 0.4bpp embedding 
rate, but gained bad results when considering a different key 
for each embedding. 

In 2016, Couchot et al. [7] also designed a CNN-based 
steganalyzer for stego images with a unique embedding key. 
The proposed structure embeds less convolutions but with 
much larger filters in the final convolutional layer, which can 
deal with larger images and lower payloads. The architecture 
took 512×512 image as input image, and the input image 
was firstly filtered by a single kernel of size 3×3, then 
followed by a layer of 64 filters as large as possible with 
zero padding. The experiments showed that the proposal 
outperformed the existing CNN-based steganalyzer and 
defeated many state-of-the-art image steganography schemes 
in case of the “same embedding key”. 
 
3. MCNN FOR IMAGE STEGANALYSIS 
3.1 CNN architecture overview 
A convolutional neural network (CNN) is designed to learn 
how to extract sets of smaller feature maps with different 
size kernels, which usually consists of several kinds of 
layers, namely convolutional layer, fully connected layer. 



The convolutional layer is the most important layer in 
CNN, which usually produces feature maps by a successive 
three-step process. The first step is a convolutional step, 
which performs a filtering process using K kernels resulting 
in K new feature maps. Then, the second step is the 
application of an activation step, which adds some 
nonlinearity to feature maps. Finally, the third step is a 
pooling step, which is applied to reduce each feature map by 
a pooling operation, typically by computing the mean or the 
max over p×p regions.  

As a classification network, the last convolution layer is 
usually connected to a fully connected layer. Then, a 
softmax function is connected to the outputs of the last layer 
in order to normalize the outputs delivered by the network 
between [0, 1]. The predicted probability of belonging to 
which class is given by the softmax function. Thus, the 
network delivers the probability values as an output, each 
presents the probability of classifying into the corresponding 
class. The classification decision is finally obtained by 
returning the class with the highest probability. 

 
3.2Architecture of the proposed MCNN 
The design of the proposed MCNN is driven by the 
following considerations. 

Firstly, steganography embeds the secret information by 
modifying pixels that are randomly widespread throughout 
the whole input image. Consequently, it is better to use large 
convolution filters to build features to capture the slight 
modifications performed by a steganographic algorithm. 
Various filter sizes had been proposed such as 3×3, 5×6, to 
12×12 or 15×15. Overall, the larger the filters are, the more 
complex stego information the feature map can contain.  

Secondly, due to the random embedding position and 
different embedding rate, the patch of images usually contain 
stego pixels of very different sizes, hence, filters with 
receptive fields of the same size are unlikely to capture 
characteristics of stego pixels at different scales. Therefore, 
it is more natural to use filters with different sizes of local 
receptive field to capture the features from the raw patches to 
the stego patches.  

Motivated by the success of Multi-column Deep Neural 
Networks (MDNNs) [8], and after some preliminary 
experiments, we proposed to use a Multi-column CNN 
(MCNN) to capture the stego features. In our MCNN, for 
each column, the different sizes of filters are used to model 
the stego patches corresponding to stego pixels of different 
scales. For instance, filters with larger receptive fields are 
more useful for modeling the stego patches corresponding to 
more stego pixels. 

The structure of the proposed MCNN is illustrated in 
Figure 1. It contains three parallel CNNs the filters of which 
are with local receptive fields of different sizes. All columns 
have the same network structures except for the sizes and 
numbers of filters. Note that the pooling operation is dropped 
in all layers, and the rectified linear unit (ReLU) is adopted 
as an activation function in each convolution layer because 
of its good performance for CNNs [9]. To reduce the 
computational complexity, less number of filters for CNNs 
with larger filters is used. We stack the output feature maps 
of all CNNs and adopt a convolution layer the filter size of 
which is 1×1 to map the stacked feature maps to the stego 
map before fully connected layer, which makes the input 
image be of arbitrary size so that the proposed method is 
adaptive to large variation in stego image size. The fully 
connected part is a classical neural network in its simplest 
form: a single output layer with two softmax neurons.  

 
Fig.1 The structure of the proposed MCNN 

 
The benefits of the designed MCNN structure include: 1) 

the input images of the CNN are usually normalized to the 
same size. Here the input images with their original sizes 
without resizing are preferred because resizing images to the 
same size will introduce additional distortion in the stego 
image that is difficult to estimate. 2) Besides the fact that we 
use three columns filters with different sizes, another 
difference between our MCNN and conventional MDNNs is 
that the output of all CNNs is combined with learnable 
weights by 1×1 filters, while the outputs are simply averaged 
in MDNNs which are not suitable for steganalysis. 

 
3.3 Optimization of MCNN training 
The output layer of softmax function can be optimized via 
batch-based stochastic gradient descent and 
backprogagation, typical for training stage. However, as the 
number of training samples are very limited, it is not easy to 
learn all the parameters simultaneously. Motivated by the 
success of pre-training, CNN in each single column is pre-
trained separately by directly mapping the outputs of the last 
convolutional layer to the stego map. Then three pre-trained 
CNNs are used to initialize CNNs in all columns and fine-
tune all the parameters simultaneously. 
 
4. EXPERIMENTAL RESULTS 
4.1 Databases and parameters used 
We evaluated the proposed MCNN-based steganalysis on 
two image cover databases, BOSS database [10] and RAISE 
database [11]. For the experiments, the BOSS database 
consists of 10000 grey-level images of size 512×512, and 
each image is divided into four parts to obtain 40000 images 
of size 256×256. The RAISE database includes 8156 high-
resolution raw images, in which all photos are stored in 
uncompressed formats, in high quality (3008 × 2000, 4288 × 
2848 and 4928 × 3264 pixels), and each image is also 
randomly divided to obtain 20000 images of size 512×512 
and 20000 images of size 256×256. Note that we used the 
same script as that used for the BOSS in order to transform 
the RAW full resolution color images into grey-level images. 

In our evaluation, we embedded the messages using two 
steganographic tools of HUGO[12] and S-UNIWARD [13] 
with two embedding payload values: 0.4 and 0.1 bpp, using 
the C++ implementations available from DDE Lab 
Binghamton web site. After embedding, the database 
obtained from BOSS consisted of 150000 images (50000 
covers and 100000 stegos), and the database from RAISE 
consisted of 120000 images (40000 covers and 80000 
stegos). We limited the experiments to these two payload 
sizes due to the high number of images and computations. 

From the computational complexity point of view, the 
numerous parameters such as the number of input images, 
the number of iterations should be optimized in order for the 
CNN to converge. In our experiments, the training 
parameters were set as follows: the “mini-batch” size was 
100, the “moment” was 0.01, the “learning coefficient” was 
0.0001 for weights and 0.0002 for bias, the “weight decay” 



was 0.002 for convolutions layers and 0.001 for the fully 
connected network, learning method was set as “SGD”, the 
“drop out” and “pooling” is not activated, the max training 
epochs were set as 200. With a learning database consisting 
of 200000 blended images of sizes 256×256 and 512×512, It 
took about five days of computation in order to find the 
“best” network with the most efficient double precision GPU 
card like the Nvidia Tesla K40. Note that the implementation 
of the proposed network and its training are based on Caffe 
framework.  
 
4.2 Clairvoyant scenarios 
In this scenario, the cover and stego images come from the 
same database, the embedding algorithm and the payload 
size are known by the steganalyst. That is to say, the 
steganalyst knows all the public parameters, but does not 
know the private parameters such as the embedding secret 
key. In order to compare with other CNN-based 
steganalyzer, we also additionally add the condition that 
stego images are obtained by applying steganography using 
the same secret embedding key. Note that the embedding has 
been done with the simulator using always the same key. 

Our experiments were carried out on the BOSS database, 
which consists of 10000 grey-level images on 8bits with size 
of 512×512 and 10000 grey-level images on 8 bits with size 
of 256×256. We embedded the messages using HUGO and 
S-UNIWARD with two payload values: 0.4 bpp and 0.1 bpp. 
The obtained set of images is, thus, made of 250000 images 
(20000 covers and 80000 stegos). 

Three CNN-based steganalyzer methods were evaluated. 
The first steganalyzer was done using the CNN presented by 
Pibre et al. [6], which is denoted as Pibre-CNN. The second 
steganalyzer was done using the CNN presented by Couchot 
et al. [7], which is denoted as Couchot-CNN. The third 
steganalyzer was done using the MCNN we built (see 
Figure.1), which is denoted as MCNN. 

For each payload size (0.4 bpp and 0.1 bpp) and mixed 
payload size, 10 tests were carried out where, for each test, 
the learning was done on 40000 images randomly taken from 
the obtained BOSS database. The tests were performed on 
20000 images (10000 covers and 10000 associated stegos) 
randomly taken from the remaining BOSS database.  

For both Pibre-CNN, Couchot-CNN, and MCNN, 
detection accuracy was computed and averaged over the 10 
tests. The results are reported in Table 1. It can be noticed 
that the CNN network is usually converged before the end of 
the training iteration except the mixed steganographic 
algorithm and payload.  

 
Table 1. Results under Clairvoyant scenarios 

Stego 

algorithm Payload 

Iter 

number 

Detection accuracy 

Pibre-

CNN 

Couchot

-CNN 

MCNN 

HUGO 0.4 52 93.03% 93.76% 94.83% 

HUGO 0.1 168 72.17% 75.59% 77.07% 

S-UNI 0.4 61 91.47% 93.15% 95.13% 

S-UNI 0.1 142 70.35% 72.94% 74.25% 

Mixed 0.1&0.4 200 79.49% 80.14% 83.68% 

 

Whatever the stegnanographic algorithm or payloads are 
chosen, the proposed MCNN has at least 1% improvement in 
detection accuracy compared with Pibre-CNN and Couchot-
CNN. Note that there is at least 3.5% improvement in the 

situation of mixed steganographic algorithm and mixed 
payload, which is an impressive outperformance considering 
the difficulty to improve percentages on the accuracy of 
steganalysis.  
Our experiment shows that our proposed MCNN is trained 
well. We conjecture a few reasons: 

i) There are three parallel CNN columns with different 
numbers of filters and different sizes of receptive fields. The 
total high number of filters (60 filters for the first layer and 
120 filters for the second layer) enriches the diversity of 
features extraction. The three different receptive fields have 
multi-scale analysis functions and can extract multi-scale 
features which improves the ability of characterizing local 
features. 

ii) The pooling layers are eliminated because they were 
acting as a down-sampling, and, thus, leading to information 
loss. 
 
4.3Cover-source mismatch scenarios 

In this scenario, the trained networks in the previous 
section are chosen and we applied them on the testing dataset 
built from 20000 images (10000 covers and 10000 stegos) 
randomly taken from RAISE database. Note that the cover-
source mismatch was present since the RAISE database is 
rather different from the BOSS one. 

The detection accuracy is reported in Table 2. We also 
evaluate the same three CNN-based steganalyzer methods as 
in the previous section. We can see that all three CNN-based 
steganalyzers with a small payload can detect stego images 
with a higher payload. To sum up, for a payload of 0.4bpp 
the proposed MCNN can detect stego images with an 
accuracy higher than 90%, while it falls to at least 65% for 
the payload of 0.1bpp and at least 81% for the unmatched 
training and testing payload. In comparison with the Pibre-
CNN and Couchot-CNN, the proposed MCNN has about 
2.5% improvement in detection accuracy. 

 
Table 2. Results under Cover-source mismatch scenarios 

Stego algorithm 

& payload 

Iter 

number 

Detection accuracy 

Training 

BOSS 

Testing 

RAISE 

Pibre-

CNN 

Couchot-

CNN 

MCNN 

HUGO 

0.4 

HUGO 

0.4 
52 89.72% 88.03% 92.83% 

HUGO 

0.1 

HUGO 

0.1 
168 65.46% 64.31% 68.87% 

HUGO 

0.1 

HUGO 

0.4 
52 79.87% 81.34% 84.56% 

S-UNI 

0.4 

S-UNI 

0.4 
61 87.02% 87.97% 90.45% 

S-UNI 

0.1 

S-UNI 

0.1 
142 61.45% 62.34% 65.05% 

S-UNI 

0.1 

S-UNI 

0.4 
61 74.76% 78.21% 81.04% 

Mixed Mixed 200 70.49% 72.14% 74.73% 
 
5. CONCLUSION 
The increasing attention gained by deep learning has raised 
the interest in whether such a method is relevant for the 



design of steganalyzer. In this paper, we put forward a 
MCNN-based steganalyzer. The designed MCNN structure 
consists of three parallel CNNs with different receptive 
fields, and each CNN  consists only of two convolutional 
layers. We use a more classical ReLU activation function 
and suppress the pooling step that was acting as a down-
sampling. 

We evaluated the detection ability of the MCNN against 
two steganographiers of HUGO, and S-UNIWARD with 
payload of 0.1 bpp and 0.4 bpp in two standard databases of 
BOSS and Raise. The obtained results show the high 
performance of the proposed MCNN-based steganalyzer. 
More precisely, compared to the state-of-the-art approach, 
i.e., the Ensemble Classifier with SRM features, MCNN 
reduces the classification error by 10 percent or more. Also, 
compared to the previous CNN-based proposals for 
steganalysis, i.e., Pibre et al. [6] and Couchot et al. [7], 
MCNN improves the classification accuracy about 3 percent. 

Since most of stegnographic softwares in Internet adopt 
the steganographic methods using the same secret 
embedding key, in which the embedding path is always the 
same and the embedding software always uses the same 
pseudo-random number sequence for generating the change 
probabilities, the proposed MCNN steganalysis is suitable 
for detecting internet stegnographic softwares. 

In future work, we will concentrate on enlarging the set of 
steganography algorithms considered during both the 
training and the testing stages, and further experiments on 
different payload sizes. Moreover, our intension is to 
optimize some of the network parameters such as the shape 
of the filters, the columns of the CNNs, and to gain insight 
into the relationship between the CNNs and the chosen 
steganographiers. 
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