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ABSTRACT
We aim to construct a version of the Reed-Solomon cod-
ing procedure which admits an easy extension when the
number of checksums has to be increased due to the rise
of the expected error rate.
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1. INTRODUCTION
Reed-Solomon codes are widely used in data transmis-
sion and storage systems. Many papers cover theoret-
ical foundations and various aspects of applications of
these codes. The present article is focused to answer the
following particular question: assuming that the redun-
dancy in the coding scheme is to be variated on the go,
how to manage the efficient coding and error correcting
procedures?

The proposed approach can be treated as the develop-
ment of the Berlekamp-Welch algorithm [1]. However,
compared with that algorithm reducing the error cor-
rection problem to that of rational interpolation, we
suggest a different procedure for the computation of
the error locator polynomial. This approach is based
on our recent investigation on solving the interpolation
problems using the appropriate Hankel polynomials [3].

We also discuss here the problem of efficient computa-
tion of the operations in finite fields, namely how the
arithmetic in GF(2s) can be implemented using the ba-
sic field GF(2). For this aim, we convert the operations
from a polynomial to a matrix formalism and detail the
structure of the obtained matrices.

Notation. We treat the Galois field GF(2s) with the
generating polynomial f(x) := xs + f1x

s−1 + . . .+ fs ∈
GF(2)[x] and with a ∈ GF(2s) standing for a prim-
itive element. For the sequence of distinct elements
{x1, . . . , xK} ⊂ GF(2s), we set

W (x) :=

K∏
`=1

(x− x`)

and define the basic interpolation polynomials as follows

W̃j(x) :=
Wj(x)

Wj(xj)
where Wj(x) :=

W (x)

x− xj
, j = 1,K.

We will also use the version W̃j(x; {x`}K`=1) when the
generating sequence is to be distinguished.

2. REED-SOLOMON ALGORITHM
Given the data blocks {Dj−1}nj=1 ⊂ GF(2s) , we first
compute the checksum blocks {Ci−1}mi=1 ⊂ GF(2s) via
systematic coding. For this aim, compose first the poly-
nomial

F (X) := D0X
n−1 +D1X

n−2 + . . .+Dn−1

and compute the remainder on division of XmF (X) by
g(X) :=

∏m

i=1
(X+ai−1); the coefficients of this remain-

der

C0X
m−1 + C1X

m−2 + . . .+ Cm−1

are taken as checksum blocks. The codeword is then
considered in the form

(Y0, Y1, . . . , YN−1)

:= (D0, D1, . . . , Dn−1, C0, C1, . . . , Cm−1)

with N := n + m. The division operation involved in
syndrome computation can be replaced by the matrix
multiplication

(C0, C1, . . . , Cm−1)> = K1 (D0, D1, . . . , Dn−1)> (1)

using the so called coding matrix [2]

K1 := [W̃i(a
N−j ; {am−`}m`=1)]i=1,m, j=1,n (2)

=


W̃1(aN−1) W̃1(aN−2) · · · W̃1(am)

W̃2(aN−1) W̃2(aN−2) · · · W̃2(am)
...

...
...

W̃m(aN−1) W̃m(aN−2) · · · W̃m(am)


Here the basic interpolation polynomials {W̃`(X)}m`=1

are generated by the sequence {am−1, am−2, . . . , 1}. Hav-
ing the matrix K1 precomputed for storage, one can
organize the syndrome evaluation for any information
block vector. In [2] a procedure is suggested for paral-

lelization of computing the polynomials
{
W̃i(X)

}m

i=1
.

We now mention just only one property of the matrix
(2): sum of the entries of any of its column equals 1.

A sequence (
Ŷ0, Ŷ1, . . . , ŶN−1

)
(3)

is taken as a true codeword iff the values of the polyno-
mial

Ĝ(X) := Ŷ0X
N−1 + Ŷ1X

N−2 + . . .+ ŶN−1



at {aj−1}mj=1:

Ĝ(1), Ĝ(a), . . . , Ĝ(am−1)

(named syndromes) are all zero. If any of these syn-
dromes is not zero then an error is detected. Assum-
ing that the number E of errors in (3) does not exceed
bm/2c, the error locator polynomial∣∣∣∣∣∣∣∣∣∣∣

Ĝ(1) Ĝ(a) . . . Ĝ(aE)

Ĝ(a) Ĝ(a2) . . . Ĝ(aE+1)
...

...
...

Ĝ(aE−1) Ĝ(aE) . . . Ĝ(a2E−1)
1 X . . . XE

∣∣∣∣∣∣∣∣∣∣∣
(4)

possesses the zeros

aN−j1 , aN−j2 , . . . , aN−jE

with j1, j2, . . . , jE standing for the positions of corrupted
blocks in the sequence (3).

3. ALTERNATIVE CODING SCHEME
Generate the basic interpolation polynomials

{W̃k(X)}nk=1 by the sequence a1, a2, . . . , an of arbitrary
distinct elements of GF(2s) and compose the polyno-
mial

L(X) := D0W̃1(X) +D1W̃2(X) + . . .+Dn−1W̃n(X)

which is just the Lagrange interpolation polynomial of
a degree ≤ n − 1 satisfying the conditions {L(aj) =
Dj−1}nj=1. This time we define the checksums as the val-
ues of L(X) at m extra distinct elements an+1, . . . , aN
of GF(2s):

Cm−1 = L(an+1), Cm−2 = L(an+2), . . . , C0 = L(aN ) .
(5)

This means the coding redundancy is organized by ex-
tending the interpolation table: the number of polyno-
mial values exceeds that of its coefficients. The formulas
(5) can be rewritten into the matrix form as

(C0, C1, . . . , Cm−1)> = K2 (D0, D1, . . . , Dn−1)> (6)

using the coding matrix

K2 := [W̃j(an+i; {a`}n`=1)]i=1,m, j=1,n (7)

=


W̃1(an+1) W̃2(an+1) · · · W̃n(an+1)

W̃1(an+2) W̃2(an+2) · · · W̃n(an+2)
...

...
...

W̃1(aN ) W̃2(aN ) · · · W̃n(aN )

 .

Compared with the coding matrix (2), the matrix (7)
possesses the property with regard to the entries of its
rows: sum of them equals 1 for any row.

The procedure of testing the sequence (3) to be a cod-
ing one goes as follows: we compose the polynomial

W (X) :=
∏N

`=1
(X + a`) and compute the values

τk :=
Ŷ0a

k
1

W ′(a1)
+

Ŷ1a
k
2

W ′(a2)
+ . . .+

ŶN−1a
k
N

W ′(aN )
(8)

for k = 0,m− 1.

Theorem 1. If any of the equalities

τ0 = 0, τ1 = 0, . . . , τm−1 = 0

fails then the error is detected.

Proof. Let

L̂(x) := L0X
N−1 + L1X

N−2 + . . .+ LN−1

be the polynomial such that {L̂(aj) = Ŷj−1}Nj=1. Then

τk =

N∑
j=1

L̂(aj)a
k
j

W ′(aj)
= L0σN+k−1 + . . .+ LN−1σk

where

σi :=

N∑
j=1

aij/W
′(aj), i = 0, N +m− 1 .

The Euler-Lagrange equalities

σi =

{
0 if i = 0, N − 2,
1 if i = N − 1

(9)

lead to the chain of relations

τ0 = L0, τ1 = L0σN +L1, τ2 = L0σN+1+L1σN +L2, . . .

wherefrom it follows that deg L̂(x) ≤ n−1 (i.e., a degree
of the new interpolation polynomial does not exceed the
original estimation) iff the condition of the theorem is
fulfilled.

Theorem 2. Assuming that the number E of errors in
(3) does not exceed bm/2c, the error locator polynomial∣∣∣∣∣∣∣∣∣∣

τ0 τ1 . . . τE
τ1 τ2 . . . τE+1

...
...

...
τE−1 τE . . . τ2E−1

1 X . . . XE

∣∣∣∣∣∣∣∣∣∣
(10)

possesses zeros

aj1 , aj2 , . . . , ajE

with j1 − 1, j2 − 1, . . . , jE − 1 standing for the positions
of corrupted blocks in the sequence (3).

Proof of the general statement is contained in [3]. The
underlying idea is outlined here with the case E = 1.

Let n < N − 2 and the polynomial L̂(x) be such that

L̂(aj) = L(aj) = Yj−1 for j = 2, N but L̂(a1) = Ŷ0 6=
Y0. Set ε := Y0 − Ŷ0. Then

τk =

(
εak1

W ′(a1)
+

Ŷ0a
k
1

W ′(a1)

)
+

Ŷ1a
k
2

W ′(a2)
+ . . .+

ŶN−1a
k
N

W ′(aN )

=
εak1

W ′(a1)
+

N∑
j=1

L(aj)a
k
j

W ′(aj)
=

εak1
W ′(a1)

for k = 0 and k = 1 due to the equalities (9). Therefore,
one has∣∣∣∣ τ0 τ1

1 X

∣∣∣∣ =

∣∣∣∣∣
ε

W ′(a1)

εa1
W ′(a1)

1 X

∣∣∣∣∣ =
ε

W ′(a1)
(X−a1) .

At first glance, the proposed scheme does not have any
advantage over the classical one recalled in Section 2
since both matrices (2) and (7) are of the same order.
However, the utility of using the coding matrix (7) ver-
sus (2) appears when the numberm of checksums should
be enlarged because of the increasing failure rate, i.e.,
when it happens that E > bm/2c. While the increase



in the number of checksums by 1 causes, besides the
appearance of an extra row in both matrices, the modi-
fication of any entry of the matrix (2), the entries of the
matrix (7) remain unchanged. Indeed, we just compute
an extra value for the polynomial L(X). For recalcu-
lation of the values (8) when the interpolation table is
extended by one element, we suggest the following re-
sult:

Theorem 3. Let

W (x) :=

K∏
`=1

(x− x`), W̆ (X) :=

K+1∏
`=1

(x− x`)

and

τj :=

K∑
`=1

y`x
j
`

W ′(x`)
, τ̆j :=

K+1∑
`=1

y`x
j
`

W̆ ′(x`)
.

Then the following relationship is valid

τ̆j =

j∑
`=1

τj−`x
`−1
K+1 + xjK+1τ̆0 .

Proof follows from the equality:

τj = τ̆j+1 − xK+1τ̆j .

4. MULTIPLICATION IN GF:
POLYNOMIALS VS MATRICES

Our next aim is to utilize the ambiguity in the choice
of the elements {aj}Nj=1 for optimizing the structure of
the matrix (7). To do this, we first intend to reduce the
arithmetic in GF(2s) to that in GF(2).

Multiplication of the elements (c0, c1, . . . , cs−1) and
(b0, b1, . . . , bs−1) of GF(2s) is traditionally introduced
with the aid of polynomial multiplication, i.e., the prod-
uct (p0, p1, . . . , ps−1) is obtained as a result of the mod-
ular 2 remainder computation

s∑
j=1

pj−1x
s−j

≡
( s∑

j=1

cj−1x
s−j

︸ ︷︷ ︸
:=C(x)

)( s∑
j=1

bj−1x
s−j

︸ ︷︷ ︸
:=B(x)

)
(mod f(x))

with f(x) standing for the generating polynomial of the
field. In order to translate this operation into the matrix
multiplication over GF(2) we compute successively the
remainder polynomials on division of

B(x), xB(x), x2B(x), . . . , xs−1B(x)

by f(x): {
bk0x

s−1 + bk1x
s−2 + . . .+ bk,s−1

≡ xkB(x) (mod f(x))
}s−1

k=0
.

Compose the matrix from the rows of coefficients of
these remainders

B := [bs−1−k,`]
s−1
k,`=0 (11)

i.e., with the order of the rows being bottom-up.

Theorem 4. One has:

(p0, p1, . . . , ps−1)> = B>(c0, c1, . . . , cs−1)> .

Proof follows from the congruences

s∑
j=1

pj−1x
s−j ≡ C(x)B(x) (mod f(x))

≡

[
s∑

j=1

cj−1x
s−jB(x)

]
(mod f(x))

≡
s∑

j=1

cj−1

[
xs−jB(x) (mod f(x))

]
.

Remark. Matrix (11) computed for polynomials B(x)
and C(x) over arbitrary (not necessarily finite) field is
known as a matrix of Bézout’s representation of the re-
sultant of these polynomials [4].

Now the coding process given by (6) can be carried
into the GF(2) both with the the data blocks {Dj}n−1

j=0

treated as vectors, and the entries of the coding matrix
(7) treated as matrices.

5. SPARSE CODING MATRIX
We have experimented with the choice of {aj}Nj=1 in or-
der to generate maximally sparse coding matrices (7),
i.e., matrices with maximal number of zeros when rep-
resented in GF(2). Some results are given below.

Example 1. GF(26), f(x) = x6 + x+ 1, n = 16,m =
4. Sample size 20000 matrices.

Figure 1. Histogram for the units distribution: Example 1

The maximally sparse coding matrix is selected for the
following values of aj represented in decimals

j 1 2 3 4 5 6 7 8 9 10
aj 32 39 53 46 59 30 52 41 25 7

j 11 12 13 14 15 16 17 18 19 20
aj 26 56 5 38 45 48 43 1 49 13

If first represented in decimals 33 56 33 43 40 53 8 10 57 3 24 51 36 56 55 55
24 62 32 57 20 34 35 22 12 48 3 41 49 16 52 62
3 57 5 8 4 1 55 2 17 1 40 48 11 30 15 20
9 7 37 37 53 6 29 53 12 24 63 8 4 32 17 2


and then with every entry replaced by the corresponding
binary matrix (11) of the order 6, the resulting coding



matrix over GF(2) contains 966 units. Compared with
the median at 1152 units, the economy is more than
16%.

Example 2. GF(27), f(x) = x7 +x3 + 1, n = 16,m =
4. Sample size 40000 matrices.

Figure 2. Histogram for the units distribution: Example 2

The maximally sparse coding matrix is detected that con-
tains 1352 units. Compared with the median at 1568
units, the economy is about 14%.

6. CONCLUSIONS
We have developed a coding scheme for Reed-Solomon
code which effectively allows to raise the redundancy in
the number of checksums without modifying the already
precalculated values.

Both approaches, i.e., the traditional one from Section
2 and a new one presented in 3, result in construction
of the error locator polynomial in the form of Hankel
polynomial (formulas (4) and (10)). For further investi-
gation, it is necessary to compose an efficient algorithm
for recomputing these polynomials when an additional
checksum is involved into the error correction process.

The structure of the coding matrix (7) is also subject to
optimization in order to make it maximally sparse by a
suitable choice of parameters.
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