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ABSTRACT 
The aim of the paper is to present a general approach to the 
identification of nonlinear stochastic systems based on 
information-theoretic measures of dependence. In the paper, 
an identification problem statement using an information-
theoretic criterion under rather general conditions is 
proposed. It is based on a parameterized description of the 
model of a system under study. Such a problem statement 
leads finally to a problem of the finite dimensional 
optimization. As a result, a constructive procedure of the 
model parameter identification is derived. It possesses a high 
level of generality and does not involve unrealistic a priori 
assumptions that degenerate the entity of the initial 
identification problem statement like those ones presented in 
some referenced literature sources and revised in the present 
paper. 
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1. PRELIMINARIES 
Measures of the comparison of continuous multivariate 

probabilistic distributions, say )(1 zg  and )(2 zg , Rz , 

are well known as measures of divergence, among which the 
Kullback-Leibler divergence 
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is, perhaps, the most widely known and applicable. Measures 
of divergence may be considered as a performance index 
within various theoretical and practical problems. In particu-
lar, the Kullback-Leibler divergence leads to the expression 
for the Shannon mutual information  21, XXI  of, as 2 , 

two random values 1X  and 2X , when one probability dis-

tribution density in  21 ggDKL , namely )(1 zg , is the joint 

probability distribution density ),( 2112 xxp  of these random 

values, and the second one, )(2 zg , is the product of the 

marginal distribution densities of 1X : ),( 11 xp  and 2X : 

)( 22 xp . Accordingly, the corresponding Kullback-Leibler 

divergence   2112 pppDKL  leads to the information-

theoretic performance index that may be considered as a 
basis for constructing a system identification criterion defin-
ing thus the information-theoretic system identification ap-
proach: 
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where  E  stands for the mathematical expectation. 
 
Regarding namely the system identification, in paper [1] the 
identification problem statement is restricted by considera-
tion of the class of linear Gaussian systems and naturally 
leads to applying the following relationship for the mutual 
information  XYIGauss ,  of the multivariate Gaussian dis-

tribution  
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In formula (1), the following notations were used: Z stands 
for the Gaussian random vector with the covariance matrix 

ZZQ , mn Zdim , with  TTT YXZ     , where 

nXdim , mYdim , and XXQ , YYQ  are the covari-

ance matrices of the random vectors X and Y respectively. In 
turn, the aim of paper [1] was to demonstrate an equivalence 
of a number of criteria of identification and control for linear 
Gaussian systems. 
 
Papers [2-5], thesis [6], and tutorial [7] consider the Shannon 
mutual information )}(),({ tytyI M  of system output process 

)(ty  and model output process )(tyM  as an identification 

criterion to derive the required model. Such a criterion is to 
be directly maximized, and the output model variable is just 
considered as the maximization argument: )}(),({ tytyI M
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is the joint probability distribution density of the output sys-
tem process )(ty  and output model process )(tyM , and 

)(ypS , )( MM yp  are corresponding marginal probability 

distribution densities of these processes. 
 
The approach proposed in [2-7] cannot be considered as a 
constructive one, because it is initially based on either a re-
quirement that the joint probability distribution density 

),( MSM yyp  of the system output process )(ty  and model 

output process )(tyM  is to be preliminary known, or the 

above system and model output processes may be observed. 



But both these assumptions cannot be actual. In fact, one 
may advert to a widely used representation of the stochastic 
system identification criterion in the form 
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function. Then, in [2-7] such a loss function ρ is just not 
given, since, for the case, it is of the form 
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marginal,    MMS ypyp   , , and (what is of special im-

portance) joint,  MSM yyp , , probability distribution densi-

ties of the system and model output processes respectively. 
 
At the same time, the fact, that this joint probability distribu-
tion density  MSM yyp ,  is initially known within the prob-

lem statement, assumes such an amount of a priori 
knowledge, under which the identification problem is al-
ready to lose its sense at all: the joint distribution of the sys-
tem and model output processes is a final result of influence 
of many factors (system and model structure, statistical 
properties of the input processes, etc.). In particular, one can 
write the following formal expression for the joint probabil-
ity distribution density  MSM YYp ,  of the system and 

model output variables, which is implied by the relationship 
for the joint probability distribution density of a transfor-
mation of a random vector [8]:  
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The above formula is written for the system model repre-
sented as  nM XXY ,,1  , where nXX ,,1   are the 

(generalized) system input variables, Y is the system output 
variable,  11,,,1 ,,, nnYnXX zzzp   is the joint probabil-

ity distribution density of the system input and output varia-
bles. In the right hand side, the integration is over the  1n
-dimensional surface determined by the system of equations 
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is the Jacobean of the functions ,1nz  over the variables 

21
, ii zz . 

 
However, just postulating a concrete kind of the joint proba-
bility distribution density of the output variables of system 
and model has been used as a basis for analytical inferences 
in [2-7], which assume the joint probability distribution of 
the system and model output processes to be Gaussian, what 
directly leads the initial identification problem to the prob-

lem of maximizing the correlation coefficient of the output 
processes of the system and model. From a substantial point 
of view, the assumption that the joint probability distribution 
of output variables of the system and model is Gaussian is 
equivalent to that, for instance, if a new method of matrix 
inversion is proposed followed by an assumption that the 
matrix subject to inversion should be diagonal. 
 
In particular, from the two above formulae the well-known 
fact follows that the joint probability distribution of the sys-
tem and model output variables is Gaussian, if the distribu-
tion of  11,,,1 ,,, nnYnXX zzzp   is Gaussian, and the 

function  nXX ,,1   describing the system model is line-

ar. So, in any more general case there is no basement for a 
priori assumption the joint probability distribution of the 
system and model output processes to be Gaussian. Such an 
assumption would be just an artificial simplification of the 
initial identification problem statement, leading to emascula-
tion of its entity. 
 
It should also be noted that the assumption that the joint 
probability distribution of system and model output process-
es is Gaussian is always not valid, for instance, under identi-
fication of the identity transformer. In fact, let the input X 
have the standard Gaussian distribution, i.e., 

)(}{ xxXP  , the system output variable XY  ; the 

model output variable XYM  ; the joint probability distri-

bution of the system and model output variables is of the 
form:  

    MMM yXyXPyYyYP  ; ;  

     MM yyyyXP ,min,min  . 

Hence, the joint probability distribution density 
 MSM yyp ,  of the system and model output variables is 

not Gaussian. 
 
As to those seldom partial cases, when the assumption that 
the joint probability distribution density is Gaussian is valid 
(if the property is implied by the system and model structure, 
probabilistic properties of input signals, etc.) reasonability of 
such an approach is quite questionable since, for this case, it 
is enough to apply ordinary least square criterion (for the 
joint Gaussian distribution the maximal correlation is well 
known to be linear and to coincide with the ordinary one). 
 
Shannon mutual information, commonly referred also as 
Shannon relative entropy, is based on involvement of corre-
sponding Shannon entropies. At the same time, along with 
Shannon entropy, a number of other ways of defining the 
entropy of a (multivariate) random value are known. So, for 
a ν-dimensional random value Z with multivariate probabil-
ity distribution density )(zg , Tsallis entropy of the order α 

is defined as [9] 
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Meanwhile, as α tends to 1, )(ZT  tends to Shannon entro-

py, and, thus Shannon entropy may be considered as Tsallis 
entropy one of the “order 1”. 
 
Like Shannon entropy, Tsallis entropy )(ZT  of a ν-

dimensional random value Z with multivariate probability 
distribution density )(zg  may be considered with regard to 



this probability distribution density )(zg , and within the 

case it will be denoted as )(gT . Thus, )(ZT  and )(gT  

should be considered as mathematically equivalent designa-
tions, both defined by formula (2). The need of such a re-
mark will be explained by the considerations below, con-
cerned with a corresponding measure of divergence of prob-
ability distributions, which involves Tsallis entropy (2) as a 
basis. 
 
Namely, using the convexity property of Tsallis entropy, in 
the literature, say [10], Jensen-Tsallis divergence 

 21 ggDJT
  of the order α of two probability distribution 

densities )(1 zg  and )(2 zg  is defined as follows 
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Meanwhile,  21 ggDJT
  is non-negative and vanishes if 

and only if )(1 zg = )(2 zg . Accordingly, as 2  and Z is 

composed of two random values X1 and X2, when one proba-

bility distribution density in  21 ggDJT
  in (3), namely 

)(1 zg , is the joint probability distribution density of these 

random values ),( 2112 xxp , and the second one, )(2 zg , is 

the production of the marginal distribution densities of X1: 
),( 11 xp  and X2: )( 22 xp , corresponding Jensen-Tsallis 

divergence  2112 pppDJT
  of the order α leads to con-

sistent, in the sense of A.N. Kolmogorov terminology, in-

formation-theoretic measure of dependence  21, XXI JT
  of 

two random values X1 and X2. 
 
From computational point of view, especially under necessi-
ty of estimation by use of sample date, Tsallis entropy 
should be considered as more attractive than that of Shan-
non, since Shannon entropy involves “integral of logarithm”, 
while Tsallis entropy does not involve logarithm at all, what 
is considerably computationally simpler. 
 
Meanwhile, selecting a particular value of the order α is of 
importance since the larger the order is, the more complicat-
ed a computational procedure becomes. These considerations 
of the computational and analytical issues of the value of the 
order α of Tsallis entropy imply reasonability of achieving a 
“compromise”, within which the parameter value 2  
looks most attractive. The value 2  in formula (3) corre-
sponds to the quadratic Jensen-Tsallis divergence and mutual 
information correspondingly. Thus, as 2  from formulae 
(2) and (3) it directly follows 
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2. PROBLEM STATEMENT AND 
SOLUTION 
As the main inference from the considerations of the above 
Section, a natural question arises, if there exist constructive 
ways of using the information-theoretic criterion, which 
would not be based on the restrictive assumptions of the kind 
considered. If so, obviously such an approach cannot be 

based on direct analytical involving the information-theoretic 
criterion since it is a functional of the unknown marginal 

   )(, MMS ypyp , and joint  )(, MSM yyp  probabil-

ity distribution densities of the system, )(ty , and model, 

);( tyM , output processes (all notations regarding the 

probability distribution densities completely correspond to 
the ones in the preceding Section). Hence, a feature of the 
constructive method is to apply some appropriate sample 
data estimates of the information-theoretic criterion instead 
of the analytical one. 
 
Let us consider a widely used in the theory and practice of 
identification class of non-linear discrete time system de-
scribed by a linear-in-parameters mapping 

 )();( tty T
M   , (5) 

 Tn ,,1  . Components of the column-vector 

 Tn ttt )(,),()( 1    are some known functions of pre-

ceding values of the input process of the system, as well as, 
generically, preceding values of the output system process. 
Thus, equation (5) is applicable to describe a broad class of 
(generically) non-linear dynamic systems. 
 
Within the problem statement, the model parameters, that is 
the column-vector   components are subject to identifica-
tion in accordance to the information theoretic criterion 
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with simultaneous substitution of the analytical expression 
for the quadratic Jensen-Tsallis mutual information with a 
suitable estimate 
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Then within the approach, the initial problem of identifica-
tion of stochastic system model (4) with information-
theoretic criterion (6), (7) under availability of sample values 
of the input and output processes gives rise to a problem of 
finite dimensional optimization 
 sup)( 


f , 

to solve which deriving an explicit analytical expression for 
the function )(f  in (7) is required. In turn, such deriving is 
based on applying a corresponding technique of estimating 
the quadratic Jensen-Tsallis mutual information. 
 
The function )(f  may be obtained in various ways con-
cerned with estimating joint and marginal distribution densi-
ties of the input and output processes, based on sample data. 
For the cases, the Rosenblatt kernel type density estimates 
[11] are widely used. 
 
Thus, in accordance with formulae (4) and (7) one may write 
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In turn, in (8) 
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In expressions (9) to (11),  Nh  is a sequence of positive 

real numbers converging to zero;  ,jK  2,1j  are posi-

tive bounded kernels on 1R , meeting conventional condi-
tions imposed on kernels under non-parametric density esti-
mation. 
 
Under assumption on the initial system subject to identifica-
tion of the form that  );(),( tyty M  to be strongly mixing 

random processes [12], and suitable integrability conditions 
imposed on the kernels  jK , 2,1j , and densities  ypS , 

 )(MM yp , and  )(, MSM yyp  (formulae (3) to (7) in 

[13]), estimate (8) has the following mean square risk 
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3. DISCUSSION 
The significance of application in system identification of 
information-theoretic criteria as a measure of dependence is 
motivated by the evidence that stochastic system identifica-
tion is always based on utilizing measures of dependence of 
random values or processes, both within representation of a 
system under study either by use of an input/output mapping, 
or within state-space description framework. Among the 
measures of dependence, conventional correlation and covar-
iance ones are the most widely known and used. Their appli-
cation directly follows from the identification problem 
statement itself, when it is based on the conventional mean 
square criterion. The main advantage of these measures is 
convenience of their use involving both a possibility of de-
riving explicit analytical expressions to determine required 
system characteristics, and relative simplicity of constructing 
their estimates involving those of based on observation of 
dependent data. However, the main disadvantage of the 
measures of dependence based on the linear correlation is 
their ability to vanish even if there exists some deterministic 
dependence between random values. Even more so is with 
regard to a stochastic dependence. Just to overcome such a 
disadvantage, use of more complicated, nonlinear, as the 
information-theoretic ones, measures of dependence was 
involved in the system identification. 
 

The key feature of the present paper approach was applying 
a consistent measure of dependence. In accordance with the 
A.N. Kolmogorov terminology, a measure of dependence 
between two random values is referred as consistent if it 
vanishes if and only if the random values are stochastically 
independent. With regard to the system identification with 
the information theoretic criterion presented, vanishing the 
Jensen-Tsallis mutual information would indicate the system 
under study to be not identifiable at all. 
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