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ABSTRACT
The paper is focused on the possibility of integrating
situation control and simulation modeling based on the
Volterra integro-power series when describing transient
processes in a nonlinear dynamic object of input-output
type. A reference object was represented by a model of
horizontal-axis wind turbine. The research deals with
nonlinear dynamics of a rotation speed of wind turbine
components depending on the blade angle and wind
speed. A two-level technology is applied to prevent
emergency situations. It consists of a quantitative ana-
lysis and a qualitative analysis. The first level is im-
plemented using the situation analysis tools based on
semantic modeling. At the second level the simulation
modeling is performed. An algorithm for construction
of a set of current situations in the semantic model is
based on the Volterra polynomial integral equations.
The Newton-Kantorovich method was applied to de-
velop an iterative method to approximately solve re-
spective nonlinear equations. The paper demonstrates
the specific features of numerically solving the studied
equations with a fixed length of mantissa in machine
representation of a floating-point number.
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1. INTRODUCTION
Evolution of the conception of intelligent power systems,
which is called Smart Grid in the other countries, re-
quires a principally new approach to the monitoring and
control of such objects [1]. Melentiev Energy Systems
Institute has developed a two-level technology for the
creation of intelligent tools to comprehensively inves-
tigate power facilities. This technology, including the
methods of situation analysis [2, 3], is aimed at prevent-
ing emergency situations [4]. Current state and trends
in the development of situation control are described in
[5]. Traditionally, the situation analysis, when used to
study the energy security problems, is made on the ba-
sis of semantic models [6].These models represent one of
the advanced artificial intelligence areas and are related
to the description of a subject domain with the help of
basic notions and relations among these notions. The
cause-effect relations are modeled normally by the on-
tological, cognitive and eventual modeling tools which
when applied to the description of nonlinear dynamics
of technical (energy) objects require the tools of mathe-

matical modeling [7]. A brief analysis of modern meth-
ods for the identification of nonlinear systems, including
advantages and disadvantages of neural networks, ge-
netic algorithms, algorithms of self-organization as well
as the algorithms based on the functional series of Viner
and Volterra is presented in [8]. According to [8, 9] the
Volterra integro-power series are the most preferable as
they can be applied to different operating conditions of
the studied object and can interact with a wide range
of technical objects of ”input-output” type.

To construct the non-stationary integral model

N∑
p=1

∑
1≤i1≤...≤ip≤2

φi1...ip(t) = y(t), (1)

φi1...ip(t) =

t∫
0

...

t∫
0

Ki1...ip(t, s1, ..., sp)

p∏
j=1

xij (sj)dsj ,

where t ∈ [0, T ], y(0) = 0, it is necessary to recover
the Volterra kernels Ki1...ip symmetric with respect to
variables s1, . . . , sp, which are called multidimensional
transfer functions [10]. The non-stationarity is under-
stood in the sense that Volterra kernels in (1) vary with
time. Currently a lot of methods are developed to de-
termine the dynamic characteristics Ki1...ip in both fre-
quency domain and time domain. Their practical appli-
cation is most often complicated by an extremely large
amount of calculations. Therefore, in their studies in
this area researchers normally seek to simplify the tech-
niques [11, 12].

The most widely spread methods for solving the prob-
lem of the Volterra kernel identification in the time
space are based on specifying pulse and staged input sig-
nals [13]. Many physical processes, however, do not al-
low pulse inputs [14]. In the case of multi-staged signals
in the form of a combination of Heaviside functions, the
decomposition of the system output into constituents is
normally performed by the method of least squares [15,
16] and neural networks [17, 18].

The technique for the identification of Ki1...ip [19], de-
veloped by the authors of this paper, is based on spec-
ifying an (p + 1)-parametric family of piecewise con-
stant inputs in the form of a combination of Heaviside
functions with deviating argument. In this case the ini-
tial problem is reduced to solving linear integral mul-
tidimensional Volterra equations of the first kind with
varying upper and lower limits. Corresponding integral
equations have explicit inverse formulas.

Further we assume that the task of identification of ker-



nels Ki1...ip in (1) is somehow solved. The goal of this
paper is to consider specific features of building a sys-
tem of situation control of nonlinear dynamic objects on
the basis of Volterra polynomials, develop a numerical
method for solving the Volterra polynomial equations
and demonstrate its implementation.

2. DESCRIPTION OF THE
SUBJECT DOMAIN

Consider a horizontal axis wind turbine plant controlled
with respect to blade lean angle. The plant is repre-
sented using the techniques [20, 21]:

dωT
dt

=
MWT (t)−MCG(t)

J
, ωT (0) = 0, (2)

z(t) =

(
1

Z(t) + 0.08b(t)
− 0.035

b3(t) + 1

)−1

,

Cp(t) = 0.22

(
116

z(t)
− 0.4b(t) + 5

)
exp

(
−12.5

z(t)

)
,

Z(t) =
ωT (t)R

V (t)
, MWT (t) =

ρSCp(t)V
3(t)

2ωT (t)
,

where ωT (rad/s) — rotational speed of wind turbine el-
ements, MWT (N ·m) — created by aerodynamic force,
MCG(N · m) — load resistance torque, J(kg · m2) —
moment of inertia of the wind turbine rotating parts,
ρ(kg · m2) — air density, S(m2) — blade-swept area,
R(m) — wind wheel radius, b(deg) – blade lean angle,
V (m/s) — wind speed; dimensionless magnitudes: Cp
— wind energy efficiency, Z — speed, z — current value
of speed. The difference approximation of the output
∆ωT (τ) = ωT (τ) − ωT0 — of system (2) to the inputs
∆b(t) = b(t)−b0 and ∆V (t) = V (t)−V0 is implemented
using the 4-th order Runge–Kutta method in the Mat-
Lab environment. A flow chart of the control object is
presented in Fig. 1.
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Figure 1. Flow chart for the wind turbine plant.

An ontological model of the wind turbine situation con-
trol was developed under the assumption that there
are no external disturbances except for the relations
of input-output type. The rules of representation of
data and ranges of variation in the parameters were
fixed with respect to some chosen steady state of the
modeled system. A scheme and description of order of
the dynamic object output calculation is presented in
[22]. Software package ”Dinamika” [23] was developed
to identify and model the reference power object (2).
We will study a problem of automatic control, related
to the search of the input x1(t) ≡ ∆b(t), which at set in-
put x2(t) ≡ ∆V (t) maintains the output ∆ωT (t) = y(t)
at a desired level y∗ (indices ”0” are used to denote the
parameters of the initial conditions). To suppress over-
shoot and provide online control of transient processes
we introduce a trained controller (in terms of [24]) on
the basis of the Volterra polynomials. It should be noted
that in [24] an example of neural network was presented

as a trained controller. The application of Volterra poly-
nomials for these purposes does not contradict the rec-
ommendations in [24]. In [25] the authors show that
some classes of neural networks are equivalent to the
final section of the Volterra series.

Mathematically, the problem of search for the control
action x1(t) can be reduced to Volterra polynomial in-
tegral equation (1). The papers [26, 27] are devoted to
the theory and application of quadrature methods (of
right and middle rectangles) to numerically solve (1) at
N = 2, 3 in case of scalar input signal. The main fea-
ture of the polynomial equation (1) at N > 1 lies in the
fact that its (unique) continuous solution is of a local
character, so that the magnitude T ∗, should be suffi-
ciently small. In the event that at some inputs x2(t)
the interval of the existence of sought solution x1(t) is
smaller than the time of transient process, this result is
interpreted as a potential loss of controllability of the
investigated process, and, consequently, an emergency.
Thus, the formation of a set of current situations in
the semantic model implies tracing the scenarios of sys-
tem response to the input with the help of a simulation
model.

3. NUMERICAL SOLUTION OF
VOLTERRA EQUATION

Consider numerical solution of (1) for the case of the
vector signal x(t) = (x1(t), x2(t))T with the help of the
Newton–Kantorovich method [28]. In practice the prob-
lem is usually limited to N ≤ 3, and the current section
addresses exactly the equations of the second and third
degree. To provide a better understanding of (1), it
would be useful to consider a test equation with con-
stant kernels: Ki1...ip(t, s1, . . . , sp) = Ki1...ip . Herein
all function and functional spaced are assumed to be

real. The change θi(t) =
∫ t
0
xi(s)ds reduces the origi-

nal problem to finding the continuous solution Θ∗(t) =
θ∗1(t) to the equations of the second (N = 2)

f(Θ(t)) ≡
2∑
i=1

Kiθi(t) +

2∑
i=1

i∑
j=1

Kjiθi(t)θj(t) = y(t)

(3)
and the third degree (N = 3)

f(Θ(t)) ≡
2∑
i=1

Kiθi(t) +

2∑
i=1

i∑
j=1

Kjiθi(t)θj(t)+ (4)

+

2∑
i=1

i∑
j=1

j∑
k=1

Kkjiθi(t)θj(t)θk(t) = y(t),

where y(0) = 0, y′(t) ∈ C[0,T ], K1 6= 0, T < T ∗. Con-
sider

P (Θ(t)) ≡ f(Θ(t))− y(t). (5)

The iterative process for solving (5) by the Newton–
Kantorovich method has the form:

Θm = Θm−1 −
[
P ′(Θm−1)

]−1
(P (Θm−1)),m = 1, 2, ...,

(6)
where

P ′(Θm−1) = K1 +K12θ2(t) + 2K11Θm−1(t), (7)

if f(Θ(t)) is defined by (3), and

P ′(Θm−1) = K1 +K12θ2(t) +K122θ
2
2(t)+ (8)

+2(K11 +K112θ2(t))Θm−1(t) + 3K111Θ2
m−1(t),



if f(Θ(t)) is defined by (4). Taking into account (6) and
(7), the approximation Θm(t) is defined by the formulas

Θm(t) =
Φm−1(t)

K1 +K12θ2(t) + 2K11Θm−1(t)
, (9)

Φm−1(t) = K11Θ2
m−1(t)−K2θ2(t)−K22θ

2
2(t) + y(t),

where

Θ0(t) =
y(t)−K2θ2(t)−K22θ

2
2(t)

K1 +K12θ2(t)

— is the initial approximation. Similarly, it follows from
(6) and (8) that

Θm(t) = (10)

=
Ψm−1(t)

a(t) + 2 (K11 +K112θ2(t)) Θm−1(t) + 3K111Θ2
m−1(t)

,

a(t) = K1 +K12θ2(t) +K122θ
2
2(t),

Ψm−1(t) = 2K111Θ3
m−1(t)+(K11 +K112θ2(t)) Θ2

m−1(t)−

−K2θ2(t)−K22θ
2
2(t)−K222θ

3
2(t) + y(t),

Θ0(t) =
y(t)−K2θ2(t)−K22θ

2
2(t)−K222θ

3
2(t)

K1 +K12θ2(t) +K122θ22(t)
.

Remark. Application of the modified Newton–Kantoro-
vich method to Eqs. (3) and (4) derives the following
computational formulas

Θ̂m(t) =
Φ̂m−1(t)

K1 +K12θ2(t) + 2K11Θ0(t)
, (11)

Φ̂m−1(t) = 2K11Θ̂m−1(t)Θ0(t)−K11Θ̂2
m−1(t)−

−K2θ2(t)−K22θ
2
2(t) + y(t)

and

Θ̂m(t) = (12)

=
Ψ̂m−1(t)

a(t) + 2(K11 +K112θ2(t))Θ0(t) + 3K111Θ2
0(t)

,

Ψ̂m−1(t) = 2K112θ2(t)Θ̂m−1(t)Θ0(t)+

+3K111Θ̂m−1(t)Θ2
0(t)−K112θ2(t)Θ̂2

m−1(t)−

−K111Θ̂3
m−1(t)−K222θ

3
2(t) + Φ̂m−1(t)

correspondingly.

Example 1. Let in (3) K1 = 1, K2 = K11 = K22 =

K12 = −1, θ2(t) = t, y(t) = t. Then Θ0(t) = 2t+t2

1−t ,

Θ∗(t) =
1−t−
√
−3t2−10t+1

2
, t ∈ [0, T ∗), T ∗ = 2

√
7−5
3

.

Table 1. Numerical results for Example 1

m Θm(tk) ||εtk || Θ̂m(tk) ||ε̂tk ||
1 0.2927 0.2469 · 10−1 0.2927 0.0247

2 0.3156 0.1878 · 10−2 0.3076 0.0098

3 0.3174 0.1265 · 10−4 0.3133 0.0042

4 0.3174 0.5818 · 10−11 0.3156 0.0018

Table 1 presents the results obtained by formulas (9)
and (11) at tk = 0.09, where m – the number iterations,

||εtk || = max
0≤t≤tk

|Θm(t)−Θ∗(t)|,

||ε̂tk || = max
0≤t≤tk

|Θ̂m(t)−Θ∗(t)|.

Example 2. Let in (4) θ2(t) = t, K1 = 1, K2 = K11 =
K22 = K12 = K111 = K112 = K122 = K222 = −1,

y(t) = −t− t2

2
− 3t3

2
− 3t4

4
− t5

4
− t6

8
, t ∈ [0, 0.4]. Then

Θ∗(t) = t2

2
. Let Θ̃0(t) =

t2(−4+12t+6t2+2t3+t4)
8·(t2+t−1)

be the

initial approximation, so that Θ0(t) − Θ̃0(t) = t3

1−t−t2 .

Table 2 presents the results obtained by formulas (10)

and (12) at tk = 0.35 and Θ̃0(t).

Table 2. Numerical results for Example 2

m Θm(tk) ||εtk || Θ̂m(tk) ||ε̂tk ||
1 0.4266 · 10−1 0.1859 · 10−1 0.0427 0.0186

2 0.5998 · 10−1 0.1272 · 10−2 0.0543 0.0069

3 0.6124 · 10−1 0.6978 · 10−5 0.0584 0.0028

4 0.6125 · 10−1 0.1285 · 10−11 0.0601 0.0012

Results of the computations show that the iterative al-
gorithm with the chosen initial approximations conver-
ges to the exact value. The algorithm was implemented
in MAPLE. We will include parameter ϕ in the generally
accepted representation of the real number. The param-
eter is equal to the number of valid digits in the mantissa
(starting from the left). Assume that the real number
x = s ·M · 10−L+ρ is specified by the set (s,M, ρ, ϕ),
where s ∈ {−1, 0,+1} is the sign of the number, M ∈
{10L−1, 10L−1 + 1, ..., 10L − 1} ∪ {0} is mantissa of the
number, L is number of mantissa positions, ρ is ex-
ponent part of the number. Table 3 presents the pa-
rameters (1,M,−1, ϕ), which define x ≡ Θm(tk) from
Example 2.

Table 3. The relationship between L and ϕ

m L M ϕ

7 5930645 2

2 8 59969900 3

9 599754850 4

17 60897699814714115 1

3 18 611887532071769490 2

19 6124215591066970715 4

In the course of the computational experiments it was
revealed that in the neighborhood of the blow up point
(T ∗) we can observe a momentary loss of accuracy in
the calculations with a fixed length of mantissa.

4. CONCLUSUONS
This work continues investigations started in [22]. On
the basis of the quadratic Volterra polynomials we per-
formed modeling of the control system for a dynamic ob-
ject represented as a mathematical model of the wind
generation plant with a horizontal rotation axis. We
considered the specifics of creating situational control
systems for nonlinear dynamic objects on the basis of
the Volterra polynomials and developed a numerical
method for solving polynomial Volterra equations. The
implementation of the method in MAPLE showed that
we have to take into consideration error generation mech-
anisms when performing computations.
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