
* The paper is supported by RFBR grant 17-01-00600 А Developing methods that protect from vulnerabilities exploitation and

also methods for bypassing such protection.

Multiplatform Static Analysis Framework for Program

Defects Detection*

Hayk, Aslanyan

ISPRAS

Moscow, Russia

e-mail: hayk@ispras.ru

Sergey, Asryan

ISPRAS

Moscow, Russia

e-mail: asryan@ispras.ru

Jivan, Hakobyan

ISPRAS

Moscow, Russia

e-mail: jivan@ispras.ru

Vahagn, Vardanyan

ISPRAS

Moscow, Russia

e-mail: vaag@ispras.ru

Sevak, Sargsyan

ISPRAS

Moscow, Russia

e-mail: sevak.sargsyan@ispras.ru

Shamil, Kurmangaleev

ISPRAS

Moscow, Russia

e-mail: kursh@ispras.ru

ABSTRACT
This paper presents multiplatform framework for static

detection of the most common program defects occurring

due to usage of C/C++ programming languages. The

developed platform capable to analyze the source code and

binary code of the program. For program analysis, SDG

(System Dependence Graph) [1] machine independent

representation is used. SDG combines call graph, control and

data flow graphs of the program. Vertices of SDG are

instructions of the program and the edges are control and

data dependencies between these instructions. The

framework consists three main components. The first

component provides SDG generation from LLVM bitcode.

The second component generates LLVM bitcode from

binary code. Binary to LLVM bitcode translation is

implemented using Ida Pro [2] disassembler and Binnavi

framework [3]. Generated bitcode is then used to construct

SDG, allowing static analysis on binary code. The third

component is the set of static checkers operating on SDG

representation. Experimental results prove scalability and

effectiveness of developed framework. We have detected

number of defects in real world projects. Using developed

tool we were able to detect several well-known defects such

as CVE-2016-0705 and CVE-2016-0799.

Keywords
Code defects, binary code, LLVM, Static Analysis, SDG.

1. INTRODUCTION
C/C++ are unsafe languages due to possibility to direct

memory access via pointers. Despite this, they still popular

because of high performance. C/C++ are used for

programming operation systems, databases, network

protocols, cryptographic libraries, rocket and plain control

systems. There are number of instruments for automatic

detection of program defects.

A format string is a simple representation of ASCII string in

a controlled manner using format specifiers. Further, this

complete ASCII string is fed to format functions such as

printf, vprintf, scanf to convert the C datatypes into String

representation. Format string vulnerabilities in C programs

have been studied extensively in recent years. Modern

compilers can perform checks during compilation [4]. These

approaches mostly based on lexical analysis and do not

count semantics of the program. Another approach uses taint

analysis to detect format string defects in C program [5]. It

annotates the input string as taint and the format string as

untaint. The untaint type object can be assigned to the taint

one, but not vice versa. If there is a type conflict system

reports about format string bug. Although there are many

approaches for format string defect detection on source code,

analyses on binary code are rare. Most of the works are

dedicated to the prevention from format string defect [6], [7].

Currently, our framework detects format strings, which

cause using non-correct specifiers.

Use after free vulnerability specifically refers to the attempt

to access memory after it has been freed, which can cause a

program to crash or lead to the execution of arbitrary code. It

is studied in several works. In [8] authors represent tool for

finding use after free defects in binary files. At first, they

track heap operations and address transfers, taking into

account aliases, using a value analysis. Then they use these

results to statically identify UAF defects. Finally, they

extract subgraphs, for each UAF, describing sequentially

where the dangling pointer is created, freed and used.

Polyspace [9] and Frama-C [10] work on source level C

code. These tools are mainly dedicated to safety verification:

programs that do not respect some constraints are rejected,

such as undefined behaviors in C.

Another type of bugs is buffer overflow. It is an anomaly

where a program, while writing data to a buffer, overruns the

buffer's boundary and overwrites adjacent memory locations.

The static approaches for finding buffer overflows, consist in

performing some code analysis (usually based on data-flow

analysis or abstract interpretation), without executing the

application. They use taint-dependency analysis [11] (to

detect that a user input can be written into a buffer) or more

sophisticated value analysis (to detect that a buffer can be

accessed out of its bound). Typical existing tools are

CodeSurfer[12] and Parfait[13].

The main purpose of the presented work is to provide

common platform for program static analysis. Framework

uses SDG as its core representation which provides all

necessary information about program semantics. Framework

allows to analyze binaries for various target architectures

(x86, x86_64, MIPS, ARM, PowerPC) as well as source

codes that can be translated into LLVM bitcode. Framework

is easily extendable, allowing developers to write own

analysis on SDG.

2. THE ARCHITECTURE
Picture 1 represents core architecture of the framework. The

first two components are responsible for SDG generation

from source or binary code. The third component contains

core algorithms for static analysis.

2.2. SDG generation
System dependence graph is one of the most detailed

structures for representing semantics of the program. It

contains call graph, interprocedural data dependences,

control and data flow graphs. SDG is generated based on

LLVM bitcode. Picture 2 demonstrates simple C++ program

and the corresponding LLVM bitcode. Appropriate SDG for

LLVM bitcode from Picture 2 is shown in Picture 3. For

each bitcode instruction an SDG vertex is constructed. Two

vertices are connected if there are data or control

dependencies between corresponding bitcode instructions (in

Picture 3 blue edges represent data dependences, green edges

corresponding control dependences).

Picture 1. Architecture of proposed framework

2.1. Translation from Binary to LLVM
In order to enable analysis on binary code, special engine

was developed which translates binary code into LLVM

bitcode. The engine consists of two main steps. At the first

IDA Pro is used to disassemble target binary and store the

result in the database. BinNavi [3] is a platform-independent

reverse engineering infrastructure designed for binary files

analysis. It can be used for new bugs discovery and malware

analysis. The most important feature that binnavi provides is

control flow based code analysis of x86, x86-64, ARM,

MIPS, and PowerPC disassembled code. Binnavi also

provides possibility of writing scripts and plugins to extend

its functionality for specific goals. Binnavi uses REIL [14]

(Reverse Engineering Intermediate Language) as core

representation of disassembled files. REIL is a meta-

assembly language that is used to write platform-

independent analysis algorithms. Structurally it is very

simple assembly language, which knows only 17 different

instructions. This representation is used to organize

translation into LLVM bitcode. First disassembled binary is

translated into REIL (this allows to implement analysis for

various target binaries, such as x86, ARM, MIPS and

PowerPC). After that each REIL instruction is mapped into

corresponding LLVM bitcode. Disassembled binaries

contain numerous instructions to access program stack. To

translate that kind of instructions program stack is emulated

in LLVM bitcode. Another challenge was functions calls

translation. For now engine supports only cdel default conv

convention for argument passing translation. In the future,

we plan to extend this functionality to support custom calling

conventions. To ensure correctness of translation whole

process is tested using compilers tests suits. Comparing to

other approaches [15], [16] our method uses REIL

representation, making translation independent from

architecture of target binary.

Picture 2. Example of LLVM bitcode

2.3. Checkers on SDG
Currently two basic analyses are implemented for SDG. The

first analysis detects pointers, which are used after deletion.

The second checker detects usages of improperly constructed

format strings when using C/C++ standard library functions

(e.g printf, sprintf). Both checkers use specially developed

taint analysis engine.

2.3.1. Taint analysis
Due to described SDG representation, taint analysis engine

has simple implementation. We provide API function for the

vertices of SDG, which detects all vertices affected by the

tainted one. The function performs BFS by data dependences

for given SDG vertex.

2.3.2. Use after free checker
The aim of this checker is to find such pointers, which were

used (dereferenced) after, delete/free operations, without

assigning them another valid pointer. In order to find such

cases algorithm at first finds all vertices SDG corresponding

to pointers ([main] %b = alloca i32*, align 8 vertex for the

SDG in Picture 1). If for any of detected vertices P there are

two vertices D and U, where:

1. Exist data edges path from P to D.

2. Exist data edges path from P to U.

3. Exist control edges path from D to U, where pointer

corresponding to P was not redefined.

4. Vertex D corresponding to delete operation.

5. Vertex U corresponding dereference instruction of P

or is a corresponding delete operation.

Then pointer corresponding to vertex P used after it has been

freed (when U is a delete operation - double free). Taint

analysis engine is used for detection data paths (instructions

affecting) from definition of pointers to the use instructions.

Checkers on SDG

Use after free

Format string

Binnavi

LLVM/clang

Construct SDG from LLVM bitcode

C/C++ code

Binary code

Defects list

#include <iostream>
int f(int *p) {
 return *p;
}
int main() {
 int *b;
 f(b);
 return 0;
}

define i32 @_Z1fPi(i32* %p) #2 {
 %1 = alloca i32*, align 8
 store i32* %p, i32** %1, align 8
 %2 = load i32** %1, align 8, !dbg !21
 %3 = load i32* %2, align 4, !dbg !21
 ret i32 %3, !dbg !21
}
define i32 @main() #2 {
 %1 = alloca i32, align 4
 %b = alloca i32*, align 8
 store i32 0, i32* %1
 %2 = load i32** %b, align 8, !dbg !22
 %3 = call i32 @_Z1fPi(i32* %2), !dbg !22
 ret i32 0, !dbg !23
}

Picture 3. SDG example

2.3.3. Format string checker
The main purpose of the checker is detecting strings, which

are tainted from the user input and is not correctly used in

printf, fprintf, asprintf, sprintf, snprintf, vsprintf, vfprintf,

vasprintf, vsnprintf, syslog functions. For any of vertices F,

which correspond to call instruction one of these functions:

1. If the call instructions do not have format specifiers or

their amount is not equal to arguments amount or

their types are not appropriate to arguments types,

then go to next step, otherwise there is no format

string defect.

2. Construct set of vertices corresponding to alloca

instructions and have path of data dependences to F.

3. Construct set of vertices corresponding to input

functions’ call instructions and have path of control

dependences to F.

4. For all vertices I from set of Step 3 of, construct set

ALLOCA_INPUT, which correspond to alloca

instructions and have path of data dependences to I.

5. Find common vertices of ALLOCA_INPUT and set if

Step 2.

If this intersection is not empty, then string variables

corresponding to the intersection can possibly be format

strings defect.

2.4. The advantages of proposed

framework
Proposed framework has three basic advantages:

1. It is applicable for both source and binary that means

possibility using on all software development life

cycle and prioritize errors which are detected in

various levels of representation.

2. The framework is easily extendable. New checkers

and platforms can be added easily.

3. The framework scalable for analysis million lines of

source code and hundred MBs of binary code.

3. RESULTS
We have performed analysis both on synthetic examples and

real world projects. In Picture 4 you can find simple “use

after free” example, which is detected by the instrument.

Picture 4.

Picture 5 demonstrates the checkers analysis time for

projects openssl, libhttpd, php, linux kernel and python. The

kernel of linux was analyzed less than in one hour. The

analysis of libhttpd took only three seconds.

Picture 5.

Picture 6 and Picture 7 show the number of alerts for “use

after free” and “format string” checkers. For linux kernel the

instrument detected about 5200 potential use after frees. For

openssl only 276 potential defects are found.

0

500

1000

1500

2000

2500

3000

3500

Checkers run time in seconds

Openssl-1.0.1.r Lighttpd-1.4.33
PHP-5.3.4 Linux kernel
Python-2.4.4

#include <iostream>

int f(int *p) {

 return (*p)++;

}

int main() {

 int *b = new int[10];

 f(b);

 delete[] b;

 int p = *b;

 return 0;

}

Picture 6.

Picture 7.

Manual analysis shows that two of the detected defects in

openssl are already known CVE-2016-0705 and CVE-2016-

0799. Alarms analysis shows that currently we have high

rate of false positive (about 80%). It is because of some

inaccuracies in SDG and not fully tuned checkers. We look

forward for farther improvements.

4. FUTURE WORK
We have two major priorities for proposed framework

improvement. The first one is the more accurate SDG

generation from binary code. For that purpose, we plan to

extend calling convention functionality to support custom

calling conventions and perform alias analysis. It would lead

to more precise SDG generation and the work of checkers

will be more accurate.

The second one is reduction of false positive. We will add

number of filters for that purpose. For example, some filters

will check corresponding source and binary code locations.

Two improvements we plan to add buffer overflow and

integer overflow checkers on SDG.

REFERENCES
[1]. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. Trans. on Prog. Lang. and Syst., 12(1):26–

60, January 1990.

[2]. www.hex-rays.com/products/ida
[3]. https://www.zynamics.com/binnavi.html

[4]. R. M. Stallman and GCC-Developer Community, Using The

Gnu Compiler Collection: A Gnu Manual For Gcc Version 4.3.3.
Paramount, CA: CreateSpace, 2009.

[5]. K. Chen and D. Wagner, “Large-scale analysis of format string

vulnerabilities in debian linux,” in PLAS, 2007, pp. 75–84.
[6]. W. L. 0020 and T. cker Chiueh, “Automated format string attack

prevention for win32/x86 binaries,” in ACSAC, 2007, pp. 398–409.

[7]. P. Kohli and B. Bruhadeshwar, “Formatshield: A binary
rewriting defense against format string attacks,” in ACISP, 2008, pp.

376–390.

[8]. Feist L Mounier M L. Potet "Statically detecting use after free
on binary code[J]" Journal of Computer Virology and Hacking

Techniques vol. 10 no. 3 pp. 211-217 2014.

[9].www.mathworks.com/training-schedule/polyspace-code-prover-
for-cc-code-verification.html.

[10]. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles,

J., Yakobowski, B.: Frama-c—a software analysis perspective. In:
SEFM, pp. 233–247 (2012).

[11]. F. Yamaguchi, A. Maier, H. Gascon, K. Rieck, "Automatic

Inference of Search Patterns for Taint-style Vulnerabilities",

Proceedings of the 2015 IEEE Symposium on Security and Privacy,

pp. 797-812, 2015-July.

[12]. Grammatech, “Codesurfer,” www.grammatech.com
[13]. B. Scholz, C. Zhang, and C. Cifuentes, “User-input

dependence analysis via graph reachability,” in IEEE Int. Workshop

on Source Code Analysis and Manipulation, Los Alamitos, CA,
USA, 2008, pp. 25–34.

[14]. www.zynamics.com/binnavi/manual/html/reil_language.htm

[15]. V. Chipounov and G. Candea. Enabling sophisticated analyses
of x86 binaries with RevGen. In Workshop on Dependable Systems

and Networks, 2011

[16]. https://github.com/trailofbits/mcsema

0

1000

2000

3000

4000

5000

6000

Detected use after frees count

Openssl-1.0.1.r Lighttpd-1.4.33
PHP-5.3.4 Linux kernel
Python-2.4.4

0

100

200

300

400

Detected format strings count

Openssl-1.0.1.r PHP-5.3.4

Python-2.4.4 Linux kernel

https://www.hex-rays.com/products/ida/
https://www.zynamics.com/binnavi.html
https://www.mathworks.com/training-schedule/polyspace-code-prover-for-cc-code-verification.html
https://www.mathworks.com/training-schedule/polyspace-code-prover-for-cc-code-verification.html
http://www.grammatech.com/
https://www.zynamics.com/binnavi/manual/html/reil_language.htm
https://github.com/trailofbits/mcsema

