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ABSTRACT 
This paper presents multiplatform framework for static 

detection of the most common program defects occurring 

due to usage of C/C++ programming languages. The 

developed platform capable to analyze the source code and 

binary code of the program. For program analysis, SDG 

(System Dependence Graph) [1] machine independent 

representation is used. SDG combines call graph, control and 

data flow graphs of the program. Vertices of SDG are 

instructions of the program and the edges are control and 

data dependencies between these instructions. The 

framework consists three main components.  The first 

component provides SDG generation from LLVM bitcode. 

The second component generates LLVM bitcode from 

binary code. Binary to LLVM bitcode translation is 

implemented using Ida Pro [2] disassembler and Binnavi 

framework [3]. Generated bitcode is then used to construct 

SDG, allowing static analysis on binary code.  The third 

component is the set of static checkers operating on SDG 

representation. Experimental results prove scalability and 

effectiveness of developed framework. We have detected 

number of defects in real world projects. Using developed 

tool we were able to detect several well-known defects such 

as CVE-2016-0705 and CVE-2016-0799. 
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1. INTRODUCTION 
C/C++ are unsafe languages due to possibility to direct 

memory access via pointers. Despite this, they still popular 

because of high performance. C/C++ are used for 

programming operation systems, databases, network 

protocols, cryptographic libraries, rocket and plain control 

systems. There are number of instruments for automatic 

detection of program defects.   

A format string is a simple representation of ASCII string in 

a controlled manner using format specifiers. Further, this 

complete ASCII string is fed to format functions such as 

printf, vprintf, scanf to convert the C datatypes into String 

representation. Format string vulnerabilities in C programs 

have been studied extensively in recent years. Modern 

compilers can perform checks during compilation [4]. These 

approaches mostly based on lexical analysis and do not 

count semantics of the program. Another approach uses taint 

analysis to detect format string defects in C program [5]. It 

annotates the input string as taint and the format string as 

untaint. The untaint type object can be assigned to the taint 

one, but not vice versa. If there is a type conflict system 

reports about format string bug. Although there are many 

approaches for format string defect detection on source code, 

analyses on binary code are rare. Most of the works are 

dedicated to the prevention from format string defect [6], [7]. 

Currently, our framework detects format strings, which 

cause using non-correct specifiers. 

Use after free vulnerability specifically refers to the attempt 

to access memory after it has been freed, which can cause a 

program to crash or lead to the execution of arbitrary code. It 

is studied in several works. In [8] authors represent tool for 

finding use after free defects in binary files. At first, they 

track heap operations and address transfers, taking into 

account aliases, using a value analysis. Then they use these 

results to statically identify UAF defects. Finally, they 

extract subgraphs, for each UAF, describing sequentially 

where the dangling pointer is created, freed and used. 

Polyspace [9] and Frama-C [10] work on source level C 

code. These tools are mainly dedicated to safety verification: 

programs that do not respect some constraints are rejected, 

such as undefined behaviors in C. 

Another type of bugs is buffer overflow. It is an anomaly 

where a program, while writing data to a buffer, overruns the 

buffer's boundary and overwrites adjacent memory locations. 

The static approaches for finding buffer overflows, consist in 

performing some code analysis (usually based on data-flow 

analysis or abstract interpretation), without executing the 

application. They use taint-dependency analysis [11] (to 

detect that a user input can be written into a buffer) or more 

sophisticated value analysis (to detect that a buffer can be 

accessed out of its bound). Typical existing tools are 

CodeSurfer[12] and Parfait[13]. 

The main purpose of the presented work is to provide 

common platform for program static analysis. Framework 

uses SDG as its core representation which provides all 

necessary information about program semantics. Framework 

allows to analyze binaries for various target architectures 

(x86, x86_64, MIPS, ARM, PowerPC) as well as source 

codes that can be translated into LLVM bitcode. Framework 

is easily extendable, allowing developers to write own 

analysis on SDG. 

2. THE ARCHITECTURE 
Picture 1 represents core architecture of the framework. The 

first two components are responsible for SDG generation 

from source or binary code. The third component contains 

core algorithms for static analysis.  



2.2. SDG generation 
System dependence graph is one of the most detailed 

structures for representing semantics of the program. It 

contains call graph, interprocedural data dependences, 

control and data flow graphs. SDG is generated based on 

LLVM bitcode. Picture 2 demonstrates simple C++ program 

and the corresponding LLVM bitcode. Appropriate SDG for 

LLVM bitcode from Picture 2 is shown in Picture 3. For 

each bitcode instruction an SDG vertex is constructed. Two 

vertices are connected if there are data or control 

dependencies between corresponding bitcode instructions (in 

Picture 3 blue edges represent data dependences, green edges 

corresponding control dependences).  

 

 

 
Picture 1. Architecture of proposed framework 

 

2.1. Translation from Binary to LLVM 
In order to enable analysis on binary code, special engine 

was developed which translates binary code into LLVM 

bitcode. The engine consists of two main steps. At the first 

IDA Pro is used to disassemble target binary and store the 

result in the database. BinNavi [3] is a platform-independent 

reverse engineering infrastructure designed for binary files 

analysis. It can be used for new bugs discovery and malware 

analysis. The most important feature that binnavi provides is 

control flow based code analysis of x86, x86-64, ARM, 

MIPS, and PowerPC disassembled code. Binnavi also 

provides possibility of writing scripts and plugins to extend 

its functionality for specific goals. Binnavi uses REIL [14] 

(Reverse Engineering Intermediate Language) as core 

representation of disassembled files. REIL is a meta-

assembly language that is used to write platform-

independent analysis algorithms. Structurally it is very 

simple assembly language, which knows only 17 different 

instructions. This representation is used to organize 

translation into LLVM bitcode. First disassembled binary is 

translated into REIL (this allows to implement analysis for 

various target binaries, such as x86, ARM, MIPS and 

PowerPC). After that each REIL instruction is mapped into 

corresponding LLVM bitcode. Disassembled binaries 

contain numerous instructions to access program stack. To 

translate that kind of instructions program stack is emulated 

in LLVM bitcode. Another challenge was functions calls 

translation. For now engine supports only cdel default conv 

convention for argument passing translation. In the future, 

we plan to extend this functionality to support custom calling 

conventions.  To ensure correctness of translation whole 

process is tested using compilers tests suits. Comparing to 

other approaches [15], [16] our method uses REIL 

representation, making translation independent from 

architecture of target binary. 

 

 
Picture 2. Example of LLVM bitcode 

 

2.3. Checkers on SDG 
Currently two basic analyses are implemented for SDG. The 

first analysis detects pointers, which are used after deletion. 

The second checker detects usages of improperly constructed 

format strings when using C/C++ standard library functions 

(e.g printf, sprintf). Both checkers use specially developed 

taint analysis engine.   

 

2.3.1. Taint analysis 
Due to described SDG representation, taint analysis engine 

has simple implementation. We provide API function for the 

vertices of SDG, which detects all vertices affected by the 

tainted one. The function performs BFS by data dependences 

for given SDG vertex. 

 

2.3.2. Use after free checker 
The aim of this checker is to find such pointers, which were 

used (dereferenced) after, delete/free operations, without 

assigning them another valid pointer. In order to find such 

cases algorithm at first finds all vertices SDG corresponding 

to pointers ([main] %b = alloca i32*, align 8 vertex for the 

SDG in Picture 1). If for any of detected vertices P there are 

two vertices D and U, where: 

1. Exist data edges path from P to D. 

2. Exist data edges path from P to U. 

3. Exist control edges path from D to U, where pointer 

corresponding to P was not redefined. 

4. Vertex D corresponding to delete operation. 

5. Vertex U corresponding dereference instruction of P 

or is a corresponding delete operation. 

Then pointer corresponding to vertex P used after it has been 

freed (when U is a delete operation - double free). Taint 

analysis engine is used for detection data paths (instructions 

affecting) from definition of pointers to the use instructions.  
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#include <iostream> 
int f(int *p) { 
   return *p; 
} 
int main() { 
   int *b; 
   f(b); 
   return 0; 
} 
 

define i32 @_Z1fPi(i32* %p) #2 { 
  %1 = alloca i32*, align 8 
  store i32* %p, i32** %1, align 8 
  %2 = load i32** %1, align 8, !dbg !21 
  %3 = load i32* %2, align 4, !dbg !21 
  ret i32 %3, !dbg !21 
} 
define i32 @main() #2 { 
  %1 = alloca i32, align 4 
  %b = alloca i32*, align 8 
  store i32 0, i32* %1 
  %2 = load i32** %b, align 8, !dbg !22 
  %3 = call i32 @_Z1fPi(i32* %2), !dbg !22 
  ret i32 0, !dbg !23 
} 
 



 
Picture 3. SDG example 

 

 

2.3.3. Format string checker 
The main purpose of the checker is detecting strings, which 

are tainted from the user input and is not correctly used in 

printf, fprintf, asprintf, sprintf, snprintf, vsprintf, vfprintf, 

vasprintf, vsnprintf, syslog functions. For any of vertices F, 

which correspond to call instruction one of these functions: 

1. If the call instructions do not have format specifiers or 

their amount is not equal to arguments amount or 

their types are not appropriate to arguments types, 

then go to next step, otherwise there is no format 

string defect. 

2. Construct set of vertices corresponding to alloca 

instructions and have path of data dependences to F. 

3. Construct set of vertices corresponding to input 

functions’ call instructions and have path of control 

dependences to F. 

4. For all vertices I from set of Step 3 of, construct set 

ALLOCA_INPUT, which correspond to alloca 

instructions and have path of data dependences to I. 

5. Find common vertices of ALLOCA_INPUT and set if 

Step 2. 

If this intersection is not empty, then string variables 

corresponding to the intersection can possibly be format 

strings defect. 

 

 

 

 

 

2.4. The advantages of proposed 

framework  
Proposed framework has three basic advantages: 

1. It is applicable for both source and binary that means 

possibility using on all software development life 

cycle and prioritize errors which are detected in 

various levels of representation. 

2. The framework is easily extendable. New checkers 

and platforms can be added easily. 

3. The framework scalable for analysis million lines of 

source code and hundred MBs of binary code. 

 

 

3. RESULTS 
We have performed analysis both on synthetic examples and 

real world projects. In Picture 4 you can find simple “use 

after free” example, which is detected by the instrument. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Picture 4. 

Picture 5 demonstrates the checkers analysis time for 

projects openssl, libhttpd, php, linux kernel and python. The 

kernel of linux was analyzed less than in one hour. The 

analysis of libhttpd took only three seconds. 

 

 
 

Picture 5. 

 

Picture 6 and Picture 7 show the number of alerts for “use 

after free” and “format string” checkers. For linux kernel the 

instrument detected about 5200 potential use after frees. For 

openssl only 276 potential defects are found. 

 

0

500

1000

1500

2000

2500

3000

3500

Checkers run time in seconds

Openssl-1.0.1.r Lighttpd-1.4.33
PHP-5.3.4 Linux kernel
Python-2.4.4

#include <iostream> 

int f(int *p) { 

  return (*p)++; 

} 

int main() { 

  int *b = new int[10]; 

  f(b); 

  delete[] b; 

  int p = *b; 

  return 0; 

} 

 

 

 



 
Picture 6. 

 

 
Picture 7. 

 

 

Manual analysis shows that two of the detected defects in 

openssl are already known CVE-2016-0705 and CVE-2016-

0799. Alarms analysis shows that currently we have high 

rate of false positive (about 80%). It is because of some 

inaccuracies in SDG and not fully tuned checkers. We look 

forward for farther improvements. 

 

4. FUTURE WORK 
We have two major priorities for proposed framework 

improvement. The first one is the more accurate SDG 

generation from binary code. For that purpose, we plan to 

extend calling convention functionality to support custom 

calling conventions and perform alias analysis. It would lead 

to more precise SDG generation and the work of checkers 

will be more accurate. 

The second one is reduction of false positive. We will add 

number of filters for that purpose. For example, some filters 

will check corresponding source and binary code locations. 

Two improvements we plan to add buffer overflow and 

integer overflow checkers on SDG. 
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