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ABSTRACT 
Architecture of a digital computing system determines the 
technical foundation of a unified mathematical language for 
exact arithmetic-logical description of phenomena and laws 
of continuum mechanics for applications in fluid mechanics 
and theoretical physics. Deep parallelization of the compu-
ting processes serves to the revival of application of func-
tional programming at a new technological level. The effi-
ciency of computations is provided by true reproduction of 
the fundamental laws of physics and continuum mechanics. 
Tensor formalization of numerical objects and computing 
operations serves to spatial interpolation of rheological state 
parameters and laws of the fluid mechanics as mathematical 
models in the local coordinates of the elementary numeric 
cells – large liquid particles. The proposed approach allows 
the use of explicit numerical scheme, which is an important 
condition for increasing the efficiency of the algorithms 
developed by numerical procedures with natural parallelism.  
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1. INTRODUCTION 
The history of the Computational Fluid Dynamics (CFD) 
evolved in the vision rapid growth of computing resources 
availability and periodic assessments of how much tera- or 
exaflops might be sufficient to solve all the problems of this 
science using pretty archaic mathematical methods. That 
said, attempts of Russian scientists [1, 2] to go back to the 
formulation of the computational problem based upon the 
synthesis of initial physical principles and to approach com-
putational experiments projecting from new positions and to 
go towards direct simulation of flows looked extremely dis-
sonant. However, in-depth analysis of the purely physical 
problems in mathematical models creation and applied algo-
rithms design in CFD was made as long ago as back in 1974 
[3]. 
 
The first alarming signals sounded at the beginning of the 
century, when it turned out that most of the standard pro-
grams, if portable to servers with multicore processors at all, 
scale very poorly to say the least. At present, when most of 
computing complexes are heterogeneous, no ideas for the 
transfer of standard CFD programs onto them are noticeable. 
And the reason for this is clear – the problem of the dynam-
ics of elementary volume and geometric aspects of the dy-
namics are related so strongly, that the amount of diverse 

information that must be exchanged at each step of the calcu-
lation is comparable to the sheer volume of the data pro-
cessed. And none of the hybrid processor is capable to cope 
with that. By now, it has become apparent that formal paral-
lelism using vectorization of processing threads is lacking as 
there’s a need for total control and hybrid fine-tuning of 
computation processes depending upon the physical condi-
tion of the liquids simulated. The development of continu-
ous-corpuscular methods based on the “Large particles 
method” [2], leads to computational models of tensor math-
ematics with independent status control of each computa-
tional cell-liquid particle, for which the computational algo-
rithms as well as functional logic of physical phenomena and 
processes synthesis is being provided by arithmetic logic 
cores operating in parallel, that exactly matches the trends in 
the development of computer technology at the requests for 
the graphic visualization of three-dimensional spatial phe-
nomena and dynamic processes with them. It is the use of 
tensor algebra for the direct simulation of physical phenom-
ena and processes as part of the generalized tensor mathe-
matics that allows to effectively synthesize hydrodynamic 
and geometrical aspects of the computing process in general. 
It’s long been understood in field theory. Such a program for 
quantum gravity was outlined in [4], and then brilliantly 
realized in [5]. CFD problems have the very same nature, 
thus it is natural here to utilize the approach based on tensor 
mathematics for them too. And creation of algorithms for 
work with tensor numeric objects on modern hybrid systems 
gets realized in a natural way. 
 
In the last years, all best practice in CFD is concentrated in 
different enterprise toolkits from ANSYS and other compa-
nies. In majority, they utilize SPH approach or different 
models like RANS (Reynolds-averaged Navier–Stokes), 
Large-eddy simulation (LES) turbulence models, or hybrid 
models, such as detached-eddy simulation (DES) and scale-
adaptive simulation (SAS) models that combine steady-state 
and LES treatments for the model’s wall boundary layer and 
free shear portions, respectively.  
 
2. GEOMETRIC SYNTHESIS OF COM-
PUTATIONAL OBJECTS AND RELAT-
ED ALGORITHMIC OPERATIONS 
Let us consider the principles of construction of the compu-
tational objects in direct computational experiment. The 
described approach allows to partly automate the validation 
of code writing and to improve its computational efficiency.  
 



The geometrical construction of spatial problems includes 
scalar, vector and tensor numerical objects. Algorithmic 
procedures and arithmetic-logic operations are defined in the 
dimensional physical form and associate numerical objects 
and interpolation basis in a tensor mesh space. 
 

Figure 1. Geometry of global space {
∨
Ω } and local basis {

∧
r  (ω)}; 

i, j, k – denote unitary vectors in the connected reference system 
 
Elementary numerical objects are formed by non-coplanar 
basis vectors (Fig. 1). They serve to build indissoluble phys-
ical fields in the vicinity of adjacent mesh nodes 

→
Ω RT  and 

centers of mass ω. Products of vector and tensor quantities 
are performed with convolution, i.e. by summation over aj 

repeated index in the monomial product (
∨→←
⋅= raa  or 

aj = ai · r 
ij), the transition to local basis and back 

(
∧←→
⋅= raa or a k =  a j·r jk ). The latter occurs at the return 

to absolute coordinates. 
 
The proposed notation is similar to that in [7] and [8]. The 
symbol notations and the principles of their construction are 
summarized below. 
 
– A Left upper index marks the current time, which may be 
indicated by a capital letter TΩ in absolute terms or the cal-
culated step in time tR. In addition, badges +ω and −ω desig-
nate links to the next or previous time interval. 
 
– A Left low index marks a location in the mesh space 

∧
rZ}Y,X,{ , or links to adducent knots 

∧
+ r}{  or centers of mass 

of liquid particles 
∨

− r}{ . It is performed on conjugate stages 
of the computational experiment. 
 
Right indices connect vector and tensor components in abso-
lute and local bases. They serve to a strict definition of the 
dynamics and deformation of numer-
ic cells (particles of a continuous 
medium). 
 
– Low right indices, tensor “box” and 
the right arrow show the belonging to 
an absolute coordinate system (Fig. 1). For example, the 
tensor 

∧
r [m3] is a collection by columns of basis vectors 

→
ir  

in matrices of geometric transformations (like 
∨→←
⋅= raa [m]). 

 
– Upper right indices mark projections inside mobile and 
deformable mesh cells. The display of unitary vectors of 
absolute coordinates lies in row vectors in matrix of inverse 
coordinate transformations, 1−∧←∨

=== rrr jkjr [m−3]. They 
are marked by tensor “tick” and vector left arrow 

∨→←
⋅= raa [m−2]. 

 

– Capital letters are used for big numerical values measured 
in scale of global space (Ω) and general absolute time (T ); 
 
– Lowercase letters are used for especially small quantities 
or finite differences which are commensurable with the 
physical dimensions of local bases of particle continuum ω, 
as well as in the range of the current time step t. 
 
The absolute time T can contain the Julian date and time 
from the beginning of the day1: kT = T + k · t. Absolute 
values in space may also be presented 2: 

∧←→→
⋅+= raRA [m] 

(geographical and other generalized coordinates). The need 
of involvement of absolute encoder in space 

→
Ω RT  and time T 

is eliminated in the balanced numerical schemes. In this 
case, the use of numerical values at nodes and centers of 
mass of conjugate mesh cells is sufficient at all stages of 
calculations 

→→∧
−=+ RRr o

o
o [m3]. 

 
Kinematics of internal streams is defined by the speed dif-
ference tensor (Fig. 2). It is given on the large liquid parti-
cles basis vectors form shifted in time, 
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Figure 2. Movement of basis vectors 3 of calculation cell in space 
 

The tensor 
∧
v [m3/s] defines the current speed of the dis-

placement of the liquid particle basis vectors on a local scale 
(lowercase letters) that is measured in the projection of the 
global coordinate system (lower indices). The independent 
convective rates tensor describing the local motion of the 
fluid is obtained after transformation of the velocity tensor 
reference frame 4 to the local basis of the large liquid particle 
(geometric normalization): 

∨∧<
⋅= rvv  [1/s]. 

 
The tensor (

<
v ) [1/s]) contains the extended set of kinematic 

elements of the differential equations with cross derivative 
components of deformable liquid particle motion: 

 
Alternatively, such products can be presented in the form of 
complete differentiation 

→∆→∆∧∧<
== ii rvrvv ωω //  executed with-

1 The real time is set by the numeric structure Event with Julian 
data: D (from 4713 BC) and local time in hours from the day be-
ginning: T 

2  In software environment points in global coordinates (Point) are 
separated with free vectors in local bases (Vector). It unifies com-
puting operations with tensor numerical objects Tensor and Basis. 

3  Tensors 
∧
ω  and 

∧
v  could be degenerate, and thus do not have a 

reciprocal. 
4  Prohibition improving rank in product operation enables automat-

ic permutation of factors in geometric transformations: 
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out artificial exceptions of “small” or convective elements in 
substantial derivative approximations. Thus correct physical 
interpretation of rheological characteristics of liquid and 
living conditions of currents is remained. 
 
3. MATHEMATICAL FORMALIZA-
TION OF CONTINUAL-CORPUSCULAR 
SIMULATION IN FLUID MECHANICS 
Tensor mathematics is focused on the creation of direct 
computational experiments in solving practical problems of 
fluid mechanics. The continual-corpuscular approach is 
based on the numerical scheme of the first order with a con-
sistent difference in the integration of the laws of motion of 
conjugate phases of scalar argument, i.e., time. Division of 
the computing stages by the physical processes enables con-
tinuous monitoring and hybrid evolution of mathematical 
relationships according to assessment of the current state of 
the simulated continuous medium, taking into account the 
intensity of the physical interaction between adjacent cor-
puscles as virtual numeric objects. The canonical representa-
tion of the laws of fluidmechanics allows strictly and unam-
biguously to associate numerical objects with arithmetic and 
logical operations and complex geometric algorithms, in-
cluding the use of fast interpolation for unregularized grid 
spaces. 
 
The consequent spatial integration of the first order involves 
grid and corpuscular approaches, formalized by means of the 
inertial mass tensor: i

km=
>
m  [kg] – which is used as a nu-

meric object to fix pre-history, i.e., inertia in motion and 
local deformation of the simulated liquid particles that 
formed an algorithmic sequence of balanced prediction and 
correction of motion by a curved path for the fluid particles 
from the dynamically changing internal energy. 
 
External mass force in the absolute coordinate system: 
→
f [kg m/s2] – in vector interpretation of the second Newton 

law is represented by the derivative of the momentum: 
tv /

>→
⋅m  – in time (Fig. 3): 

 
>→→

⋅=⋅ mvtf  [N·s] 
 
At the stage of continuous matter of computational experi-
ment the vector fields are specified by the absolute velocity 
of the free movement of fluid particles 

→
V [m/s] – and the 

local velocity − 
→
v [m/s] – under the influence of external 

mass forces 
→
f  [kg m/s2] with the internal energy and inertia 

of 
∧∨>
⋅= rρm [kg] – of specific particle: 

∧
r  [m3] – in the prod-

uct with tensor 
∨
ρ [kg/m3], which formalizes the prehistory 

actions of volume force of inertia and of surface complex of 
living forces – the inherent energy of a liquid corpuscle. The 
center of mass and any inclusions inside a corpuscle 

←
a [m−2] 

– move in time t [s] in dependence on the environmental 
conditions 

<
m [kg−1] – in the vicinity of the nodes of the 

computational grid 
→

ΩR [m] – inside the spatial cells 
∨
r [m−3]: 

 t⋅+=
>∧∧∧+ mfvv /  [m3/s], 

 tfVV ⋅+=
>→→→+ m/  [m/s], 

 )( tatVRA ⋅+⋅+⋅+=
∧+∧←→+→→+ vr    [м], 

where 
→+ A [m] − is the point location at new (next) time 

step; 
→
R [m] − is the original location of numerical cell cen-

ter; 
→
V [m/s] – rate of free movement for a liquid particles; 

∧
v [m3/s] - rotation and deformation tensor of the basis axes 

for the initial form tensor 
∧
r [m3]; 

∧
f [N m2] – is the surface 

tensions tensor dynamically approximated by adjacent cells 
and boundary conditions. 
 

  
Figure 3. Separation of the calculating stages by the physical pro-
cesses includes tensor mass as a geometric operator which corrects 
the motion of the fluid particles by the Vis viva (inner energy) and 
inertia at the conjugate stages of simulations in the time 
 
The conjugate corpuscular stage of computations generates 
an updated kinematic field of local velocities’ trivectors 
∧
υ [m3/s] – specifying the deformation displacements relative 
to shifting corpuscles: 

∧
ε [m3] – for reverse interpolation – 

secondary difference integration (Fig. 4) with fixing the ten-
sions 

<
σ [kg m2/s2] – in the immediate vicinity of the virtual 

numeric objects: 

 λ×⋅+⋅=
∨∧∨∧<

)( ηυκεσ  [N·m] 

where 
∨
κ [N/m3] – tensor modulus of elastic deformation; 

∨
η [N s/m3] – tensor of viscosity coeffcients; λ [m] – the 
scale factor, which characterizes the distance between the 
interacting virtual energy objects – the large particles of 
liquid. 

  
 
Figure 4. At the corpuscular stage of computational experiment an 
estimate of the current rheological state of the continuum in the 
initial nodes of the computational grid is made 
 
Note that the tensors of tensions and local velocities may be 
degenerate. Change of basic sets without possibility of their 
inversion is performed only in multiplication operations with 
tensors of the form 

<∨∧
=⋅ vrv [s−1] – or by algorithmic synthe-

sis on the base of interpolation estimates of the environmen-
tal fluid state. 
 
By analogy [6] inside the moving liquid particles a scalar 
function of the temperature distribution is involved, that is 
spread between the free particles by negative gradients; or 
change in the density of the elastic gas related to velocity of 
sound as function of the divergence of velocity and pressure 
values, including refinements imposed by the Bernoulli law 
and with the consideration of internal thermal energy, which 



altogether synthesizes the extended solution of applied aero- 
and hydromechanics problems. 
 
As the main loop in the computer experiment, the sequence 
of algorithms intended for matching kinematic and rheologi-
cal characteristics of the physical field in explicit numerical 
schemes, reducible to the mode of sequential setting of non-
stationary computational processes arising from mathemati-
cal models for viscous, elastic and compressible fluids is 
accepted. 
 
4. TENSOR REPRESENTATION OF 
THE BASIC LAWS OF FLUID ME-
CHANICS 
The formal construction of physical objects and operations in 
the tensor mathematics [7] leads to strict definitions for the 
kind of “model of world” of computational fluid mechanics: 
1) continuous corpuscular computing model of the method of 
“large particles” [2] in the tensor recording is reduced to a 
double linear difference interpolation of the physical fields 
(instead of integrating the equations of motion of the second 
order); 2) the movement and interaction of large liquid parti-
cles is built in terms of the operations of the product that 
more precisely corresponds to the physics of spatial process-
es (there are no restrictions on the smallness of the differen-
tial approximation); 3) the use of explicit numerical schemes 
and of discrete numeric fields serves to increase the effec-
tiveness of direct computational experiments, and do not 
exclude the possibility of monitoring the correctness and, if 
necessary, involving of hybrid schemes to achieve adequate 
engineering results of direct numerical simulation. 
 
The law of motion for a particle continuum: 

 
∧
⋅

∨
⋅=

>
=

→→→
rρm wwf · .        [N] 

 
The Newton’s viscous stress tensor: 

 λλ /·/·
<<∨∧<

== ηvηvf NNN .        [N/m] 

 
The Hook’s elastic stress tensor: 

 λλ /··/·· tt HHH
<<∨∧<

== κvκvf ,        [N/m] 

wherein the tensor of local velocities i
o
oi VV
→→+

+
∧

−=v  (Fig. 2); 

rheological tensors 
∧∨>

= rρm · [kg] – tensor of mass inertia; 
∧
r [m3] – tensor of form; 

∨
ρ [kg/m3] – “conditional density” of 

saving the pre-history of deviations – internal Vis viva (local 
forces) of moving corpuscles; 

>
η [kg/m2/s] – tensors of dy-

namic viscosity and stiffness 
>
κ [kg/m2] of real fluid; λ – 

short distance interaction of adjacent particles. 
 
The computational model comprises rheological properties 
of the fluid: viscosity and elasticity, while the ratio of the 
intensities of the resulting tensions determines the appear-
ance of the critical flow regimes with the formation of jets, 
vortex layers and cavitations breaks. Under the influence of 
the internal stress tensor, a fluid particle gets velocity incre-
ment to internal (closed) movement which is traditionally 
represented by three dynamic states:  

 

HN

HN tt
<<<

∧∧∧<

++

=⋅⋅+⋅⋅⋅=

=

+
∨∨∨

fff

κvμvεvf

0

//0 λλ ,  [Н/м] 

where the tensor 0
<
f  is the pressure, 

<
ε  is the compression 

ratio. The dynamic coefficients 
∨
μ ,

∨
κ ,

∨
ε  differ from the kin-

ematic ones by elimination of the scalar density value ρ. The 
resulting characteristic polynomial is used to assess the state 
of the liquid where the rheological parameters appear as the 
main invariants of the tensor of the convective velocities: 
 

0
<
v : I ≠ 0 – compressibility → cavitation density gap; 

N
<
v : II≠0 – turn → formation of free jet or turbulent vortex; 

H
<
v : III≠0 – deformation, net → if the other invariants of the 

tensors are zero. 
 
For example, if the computed cell with an attached vortex 
makes the determinant of internal field of convective veloci-
ties equal to zero in a conjugated point, i.e., in the point at 
the center of mass of free conjugate liquid particle, that will 
determine the emergence of a free turbulent vortex inside a 
large liquid particle. Such hybrid algorithm can be used ei-
ther outside the approximated resolution for relatively coarse 
grids, or to improve decisions when the grid area in the zone 
of vortex shedding should condense. 
 
5. ON PECULIARITIES OF THE TEN-
SOR GENERALIZATION OF APPLIED 
FLUID MECHANICS PROBLEMS 
At stages of computing experiment the velocity field 
∧
ω [m3/s] is formalized with a potentially degenerate tensor 
that satisfies the traditional additive construction of the flow 
model to ⋅+=

∧∧∧+ vrr [m3] – in absolute time: t [s]. The 
definition of the tensor – affinor and expansion of Cauchy-
Helmholtz [8] for spatial displacement is true: expansion 
(divergence); twist (rotor) and the deformation (shear). 
 
Discrimination of the ball (diagonal) tensor o

<
v [s-1] – such 

that the trace of the deviatory residue: tr *<v – would be 
equal to zero [9]: 
 

 *
0

<<<
+= vvv   (tr *<v =0)        [c-1]; 

      t⋅⋅=
<<<
0vεσ        [N], 

where tensor determinant 
<
σ – determines the pressure, 

<
ε – 

volume compression ratio – Young’s modulus. 
 
Symmetrization of deviatory tensor *<v – sets the shear stress 

H
<
τ [N/m2] – according to Hooke’s law within 
the large particle continuum: 

2/)( ** tt T
HH ⋅+⋅=⋅⋅=

<<<<<<
vvcvcτ  [N] 

with the elastic modulus 
<
c  [N/m2] and symmetric tensor 

with respect to local displacements within a large fluid parti-
cle tH ⋅

<
v . 

 
Skew-symmetric superposition with the components of the 
deviatory tensor separates the initial impulse to the rotation 

of the liquid particles, with the emergence of 
stress 

<
Nτ – in Newtonian definition of a viscous 

liquid mechanics: 

 2/)( ** T
NN

<<<<<<
−⋅=⋅= vvvητ η  



with the viscosity coefficient matrix 
<
η [N s/m3] – in a prod-

uct with the tensor of local deformations velocities N

<
v [c-1]. 

The rheological characteristics of the state of liquid 
<
ε [N/m2], 

<
c [N/m2] and 

<
η [N·s/m2] – can be defined by sca-

lar coefficients in the traditional relationship between stress, 
local deformations and viscose movements of the continuous 
medium. In the tensor generalization the anisotropy of prac-
tical cross–linking components in the rheological character-
istics of the liquid is implicitly taken into account by means 
of Poisson's coefficients. 

Tensor mathematics completely covers the tradition-
al models for linking internal stress with small displacements 
and strain velocities: 

 NHNH t
<<<<<<<<<<
⋅+⋅⋅+⋅=++= vηvcvεττσ )( 0ϕ  

 
In order to bring the law of motion with inertial mass 

<<<
⋅=⋅ vmf t  [kg/s] – to the new relationships for the surface 

tension 
<
ϕ [kg/m/s2], the factor with the dimension of the 

space vector is necessary, that corresponds by the physical 
meaning either to the vector of direction of movement for 
Zhukovsky theorem for the free vortex dipole, or to the dis-
tance between the interacting particles of liquid. 
 
6. CONCLUSION 
The geometrical construction of non-regularized grid spaces  
[10] in explicit numerical schemes of the first order for the 
sequential integration in conjugated stages in continuous-
corpuscular computing experiments when modeling the tran-
sient processes in fluid mechanics is represented by sequen-
tial superposition upon the architecture of digital computers: 
1. A continual corpuscular division of the stages of the com-
puting experiment in fluid mechanics is constructed in the 
continuity space of physical values, initially defined in a 
single absolute coordinate system using scalar, vector and 
tensor characteristics of the state and the laws of transfor-
mation of the mobile and deformable continuous medium; 
2. In multiplication operations with external (mass) and in-
ternal (surface) tensions for the computed time interval, the 
internal state of each computed cell is rebuilt in the simili-
tude of the estimated independent large fluid particle accu-
mulating internal energy and making influence on the kine-
matic reactions in the interpolation rebuilding of updated 
physical fields in the initial computational nodes; 
3. In dealing with very complex physical laws of fluid me-
chanics, an additional third phase of calculations is intro-
duced for monitoring and adjusting the internal state of the 
liquid particles, with the coordination of the laws of conser-
vation of the mass and momentum of the free liquid particles 
from the point of alignment the calculations at the two main 
stages of the computational experiment for the scalar argu-
ment, the time. 
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