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ABSTRACT 
The emergence of multi-core and heterogeneous 
architectures requires the processing of a number of linear 
algebra algorithms to take advantage of accelerators, such as 
graphics processors. There is a difficult class of problems 
involving linear algebra operations for thousands of small-
dimensional matrices. Batched computations continue to 
have a wide range of applications in scientific calculations. 
Their goal is to more efficiently transfer the application of 
algorithms to high-performance multi-core architectures.  
Some operations of linear algebra are presented in this work 
for complex Hermitian small matrices, which are grouped 
together under the name of Batched BLAS. In this work the 
performances of the complex Hermitian Batched matrix-
matrix multiplication, matrix-vector multiplication and 2nd 
rank update operations are presented on NVIDIA Tesla K40c 
graphics processor with the use of MAGMA library. 
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1. INTRODUCTION
The origin of Basic Linear Algebra Subprograms (BLAS) 
standard was observed from 1973, when Hanson, Krogh, and 
Lawson published an article that described the advantages of 
adoption of basic collection procedures for linear algebra. It 
led to the creation of a linear algebra package BLAS [1], 
which became quite successful and competitive. It was 
adopted as a standard and first used in LINPACK [2] 
package. Initially BLAS consisted of 2 levels [3], when the 
3rd level was suggested[4], which included the most 
important actions associated with matrices, LINPACK was 
reprocessed to LAPACK [5] in order to use the newly 
created 3rd level of BLAS.The MAGMA package is a linear 
algebra library as LAPACK but it is intended for 
heterogeneous Multicore+GPU architectures [6]. MAGMA 
aims to develop algorithms and structures of linear algebra in 
graphics processors and hybrid multicore systems.  
CUBLAS is a CUDA library on GPU produced by NVIDIA. 
LAPACK is a Fortran library on CPU. MAGMA calls some 
subprograms of CUBLAS and LAPACK, but involves more 
complex procedures. Upon the emergence of the 
heterogeneous system with accelerators, a software shortage 
of especially many small matrix operations of linear algebra 
was observed.  Many modern works use solutions for many 
small matrix operations. The Batched subprograms have 
recently been integrated into MAGMA, which solve many 
small problems and are called MAGMA Batched 
subprograms. These subprograms are based on Batched 
BLAS package. NVIDIA already presents the optimized 
Batched BLAS applications in CUBLAS [7] package. 
The aim of the Batched subprograms is the parallel solution 
of set of problems independent of each other. If one matrix is 
large enough, then the Batched subprograms are not required 
to transfer it to GPU, but when the matrices are small (for 

example,the sizes of which are less than or equal to 512) the 
amount of work needed to perform the factorization cannot 
saturate the device, therefore there is a need for Batched 
subprograms. 
This work presents the matrix-matrix multiplication, matrix-
vector multiplication Batched BLAS operations of small 
Hermitian matrices, as well as the realizations of 2nd rank 
update functions on Tesla K40c graphics processor using the 
MAGMA library, and gives their performances with the 
amounts of 1000 and 2000 in the case of processing of small 
matrices. Note, that there exist works [8,9] on  the above 
mentioned  Batched functions, concerning the general 
matrices, but there are still no papers on Hermitian matrices. 
The implementation of the above mentioned functions in a 
hybrid system is realized through the latest edition of 
MAGMA 2.2.0 [10] library, in which the Hermitian Batched 
functions have just been integrated. It should also be noted 
that in the structure of the functions of the recently released 
CUBLAS library there are no Batched operations associated 
with the Hermitian matrices. 
The second section of the article presents the stages of 
processing of the Hermitian Batched matrix-matrix 
multiplication in the hybrid CPU-GPU system.The test 
results are presented in the third section, which were made in 
the case of processing of 1000 and 2000 amount of small 
matrices. The fourth section is the conclusion.

2. BATCHED IMPLEMENTATION FOR
GPU 
The name of a Batched BLAS routine follows, and extends 
as needed, the conventions of the corresponding BLAS 
routine. In particular, the name is composed of 5 characters, 
specifying the BLAS routine and described below, followed 
by the suffix_batched: 
 The first character in the name denotes the data type of the 
matrix, as follows: 

- s float, 
- d double, 
- c single complex, 
- z double complex. 

Characters two and three in the name refer to the kind of 
matrix involved, as follows: 

- ge All matrices are general rectangular, 
- he One of the matrices is Hermitian, 
- sy One of the matrices is symmetric, 
- tr One of the matrices is triangular. 

The fourth and fifth, and in one case sixth, characters in the 
name denote the operation. 
For the Level 3 Batched BLAS, the operations are given as 
follows: 

- mm Matrix-matrix product, 
- rk Rank-k update of a symmetric or Hermitian 

matrix, 
- r2k Rank-2k update of a symmetric or Hermitian 

matrix, 



- sm Solve a system of linear equations for a matrix 
of right-hand sides. 

The arguments that specify options are of enum type with 
names side, transa, transb, trans, uplo, and diag. These 
arguments, along with the values that they can take, are 
described below: 
side has two possible values which are used by the routines 
as follows: 
Side=MagmaLeft: Specifes to multiply a general matrix by 
symmetric, Hermitian, or triangular matrix on the left. 
Side=MagmaRight: Specifes to multiply general matrix by 
symmetric, Hermitian, or triangular matrix on the right. 
transa, transb, and trans can have three possible values each, 
which is used to specify the 
following: 
trans=Magma_NoTrans: Operate with the matrix as it is; 
trans=Magma_Trans: Operate with the transpose of the 
matrix; 
trans=Magma_ConjTrans: Operate with the conjugate 
transpose of the matrix. 
uplo is used by the Hermitian, symmetric, and triangular 
matrix routines to specify whether 
the upper or lower triangle is being referenced, as follows: 
uplo=MagmaLower: Lower triangle; 
uplo=MagmaUpper: Upper triangle. 
The batchCount argument is an integer that indicates the 
number of matrices to be processed. 
The description of the matrix consists of the array name 
(arrayA, arrayB, or arrayC) followed by an array of the 
leading dimension as declared in the calling function (lda, 
ldb, or ldc). The ith values of the arrayA, arrayB, and arrayC 
are pointers to the arrays of data Ai, Bi, and Ci, respectively. 
Similarly, the values of lda[i], ldb[i], and ldc[i] correspond 
to the leading dimensions of the matrices Ai, Bi, and Ci, 
respectively. 
Arrays of scalars are named alpha and beta, where values at 
position i correspond to the α and β scalars for the BLAS 
operation involving matrices Ai, Bi, and Ci. 
Of the three subprograms we will only show the 
implementation of the batched matrix-matrix multiplication 
on GPU, because the realization of the remaining two 
functions is performed on the same principle, using the 
appropriate arguments. 
Batched Hermitian matrix-matrix multiplication implements 
the following computation: 
for ( int p = 0; p <batchCount; ++p ) { 
   for ( int m = 0; m < M; ++m ) { 
      for ( int n =0; n < N; ++n) { 
         c_mnp = 0; 
         for ( int k =0; k < K; ++k ) 
             c_mnp += A[p][m + k * lda] * B[p][k + n * lda]; 
             C[p][m+n*ldc]=(*alpha)*c_mnp+(*beta)*C[p][m+ 
              n*ldc]; 
         } 
      } 
} 
where A[p], B[p], and C[p] are matrices. 
In magmablas, the interface is: 
magmablas_chemm_batched(magma_side_t side, 
magma_uplo_t uplo, magma_int_t  m, magma_int_t n, 
magmaFloatComplex alpha, magmaFloatComplex  
**dA_array, magma_int_t ldda, magmaFloatComplex 
**dB_array, magma_int_t lddb, magmaFloatComplex beta, 
magmaFloatComplex **dC_array, magma_int_t lddc, 
magma_int_t batchCount, magma_queue_t queue); 
This subprogram has one of the following forms: 
If side = MagmaLeft, then  
If side = MagmaRight, then,  

where the matrices A, B, and C are complex Hermitian, and 
 and  are scalars. 

If uplo = MagmaUpper, then only the upper triangular part 
of the Hermitian matrix is to be referenced. 
If uplo = MagmaLower, then only the lower triangular part 
of the Hermitian matrix is to be referenced. 
dA_array- array of pointers, dimension(batchCount). Each is 
a complex array A of dimension( ldda, ka ), where ka is m 
when side = MagmaLower and is n, otherwise. 
ldda-specifies the first dimension of each A as declared in 
the calling (sub) program. 
dB_array- array of pointers,dimension(batchCount). Each is 
a complex array B of dimension( lddb, n ). 
lddb- specifies the first dimension of B as declared in the 
calling (sub) program. 
dC_array- array of pointers, dimension(batchCount). Each is 
a complex array C of dimension ( lddc, n ). 
lddc-specifies the first dimension of C as declared in the 
calling (sub) program. 
batchCount-the number of matrices to operate on. 
queue- queue to execute in. 
The implementation of this subprogram in the hybrid CPU – 
GPU system is performed in the following sequence: 

1) In CPU, memory is allocated for A, B and C 
matrices via magma_cmalloc_cpu() function of 
Magma library. For example, for the matrix A this 
function will have the following form: 
magma_cmalloc_cpu(&A, lda*n*batchCount).    

2) In GPU,memory is allocated for A, B and C 
matrices via magma_cmalloc() function of Magma 
library. For the matrix A this function will have the 
following form: magma_cmalloc(&d_A, 
ldda*n*batchCount). 

3) In GPU, memory is allocated for arrays consisting 
of references directed to the matrices d_A ,d_B  
and d_C. For example, for d_A the function 
magma_malloc() will have the following form: 
magma_malloc((void**)&dA_array, batchCount * 
sizeof(*dA_array)). 

4) In the memory of the CPU, the matrices A, B and 
C are initialized using the function 
lapackf77_clarnv() of the LAPACK library. 

5) Matrices A, B and C are moved from the CPU 
memory to the GPU memory using the 
magma_csetmatrix() function. For the matrix A 
magma_csetmatrix( n, n*batchCount, a, lda, d_a, 
ldda ). 

6) Before calling the required function, the program 
includes the function magma_sync_wtime(queue) 
of time performance, which is integrated into the 
magma_timer.h library. 

7) We call magmablas_chemm_batched () matrix-
matrix function multiplication for Hermitian small 
matrices, where the required values of all 
arguments are given beforehand, for example, the 
dimension of matrices to be entered, the upper or 
lower triangular matrix used and the most 
important value -  batchCount, which indicates 
how many matrices are  to be processed. 

8) After the operation of the function, fix the 
implementation time and then calculate the 
function operation performance. 

9) Using the magma_cgetmatrix() function, the 
matrix C is moved from the GPU memory to the 
CPU memory. 

It is very important to note that any magma program begins 
with the initialized function magma_init() and ends with the 
magma_finalize() function of finalization. 



It should also be noted that in the hybrid system after the 
completion of any program, the CPU and GPU memory 
should be freed. It is done using the functions 
magma_free_cpu () and magma_free (), respectively. 
 
 
3. EXPERIMENTAL RESULTS 
The experiments were conducted on NVIDIA K40c GPU. 
The architecture of Tesla K40c consists of 2880 CUDA 
processor cores. It is endowed with much higher bandwidth 
288 GB/s of message transfer between CPU and GPU, 
having 12 GB of global memory per card running at 745 
MHz., GDDR5 memory interface, and CUDA C 
programming environment. 
The operation system of Tesla K40c is Ubuntu 14.04.2 LTS. 
Cuda7 programming environment was used for the 
realization of programs. MAGMA 2.2.0 package was 
installed in accordance with cuda7 environment. For the 
compilation of MAGMA library the lapack-3.4.2, clapack-
3.2.1 and atlas-3.10.0 packages were installed. Gcc-4.8, 
gfortran-4.8, g ++ - 4.8 and nvcc compilers were used. Such 
references were made in make.inc file on libf77blas.a, 
libcblas.a, libf2c.a, libcublas.so, libcudart.so, libm.a, libstdc 
++.so, libpthread.so, libdl.so, libcusparse.so static and 
dynamic libraries. MAGMA 2.2.0 package contains 
libmagma.a, libmagmablas.a and libmagma_sparse.a 
libraries. 
During the experiments the 1000 and 2000 number of small 
matrices with the dimension from 32 to 512 were processed. 
Figures 1 and 2 show the performance graphics of Batched 
multiplication of Hermitian small matrices for single 
complex precision and double complex precision cases, 
respectively. 
 

 
 

Fig. 1. Performance of Batched HEMM in single complex 
precision 

 

 
 
Fig. 2. Performance of Batched HEMM in double complex 

precision 

The results show that as in the case of single complex 
precision, as well as in the case of double complex 
precision,no significant differences in performance are 
observed at 1000 and 2000 number of matrix processing. 
However, in the case of single complex precision of the 
mentioned incoming matrices of all cases, the performance is 
3 times higher than the double complex precision. As a result 
of the experiments it was found that in the case of single 
complex precision, the program does not run at 512 
dimension of 2000 number of matrices, it is also not 
executed in the case of double complex precision with the 
512 dimension of 1000 number of matrices, but the program 
does work in the case of 2000 number of matrices not 
exceeding 400 dimension.   
With respect to the execution time, only note that the 
processing duration in the case of single complex precision 
is up to 1 second, and in the case of double complex 
precision it is up to 2 seconds. 
Figures 3 and 4 depict the performance graphs of Hermitian 
small matrices and vectors of Batched multiplication for the 
cases of single complex precision and double complex 
precision, respectively. 
 

 
 

Fig. 3. Performance of Batched HEMV in single complex 
precision. 

 

 
 

Fig. 4. Performance of Batched HEMV in double complex 
precision. 

 
The results obtained in the operation of the matrix-vector 
multiplication show that as in the case of matrices, as well 
as in this case, in both single complex precision and 
double complex precision cases at 1000 and 2000 numbers 
of matrix processing no significant differences are 
observed. Here again, the performance of single complex 
precision exceeds that of double complex precision for 3 
times. 
Execution time duration in both single complex precision 
and double complex precision cases does not exceed 1 
second. 



Figures 5 and 6 show the performance graphics of Batched 
2nd rank update operation of Hermitian small matrices for 
single complex precision and double complex precision 
cases, respectively. 

 

 
 

Fig. 5. Performance of Batched HER2K in single complex 
precision 

 

 
 
Fig. 6. Performance of Batched HER2K in double complex 

precision. 
 

In the case of Batched 2nd rank update operation of 
Hermitian small matrices, like in the aforementioned two 
operations, again no significant differences in performance 
are observed at 1000 and 2000 numbers of matrix 
processing. Here the performance of the single complex 
precision exceeds that of double complex precision for 2 
times. It should also be noted that in case of double precision 
the matrix dimension of 2000 number must not exceed 400. 
In the case of this operation the execution time is 1 second in 
all cases. 
 
 
6. CONCLUSION  
The performances of Batched matrix-matrix multiplication, 
matrix-vector multiplication and 2nd rank update operations 
for Hermitian small matrices were presented in CPU-GPU 
hybrid system using Tesla K40c graphics processor. In this 
paper the results of the three Batched calculations are 
presented for Hermitian small matrices using the MAGMA 
2.2.0 library, because they are missing in the structure of 
Batched functions of even recently released CUBLAS 
library. Based on the obtained results, we came to the 
following conclusion that in the case of matrix processing of 
dimensions from 32 to 512 with both 1000 and 2000 
numbers, in the three mentioned Batched calculations no 
significant differences were observed for single complex 
precision and double complex precision cases. We also 
obtained that in the multiplications of matrices and matrix-
vector of the single complex precision case the performance 

exceeds the double complex precision case for 3 times, and 
in the case of 2nd rank update operation it exceeds for 2 
times. With respect to the runtime, only note that the 
duration of the operations is 1 and 2 seconds. 
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