
Batched BLAS Problems of Complex Hermitian Small Matrices in the

Architecture of GPU Accelerator

Edita Gichunts
Institute for Informatics and Automation Problems of NAS RA

e-mail: editagich@ipia.sci.am

ABSTRACT
The emergence of multi-core and heterogeneous
architectures requires the processing of a number of linear
algebra algorithms to take advantage of accelerators, such as
graphics processors. There is a difficult class of problems
involving linear algebra operations for thousands of small-
dimensional matrices. Batched computations continue to
have a wide range of applications in scientific calculations.
Their goal is to more efficiently transfer the application of
algorithms to high-performance multi-core architectures.
Some operations of linear algebra are presented in this work
for complex Hermitian small matrices, which are grouped
together under the name of Batched BLAS. In this work the
performances of the complex Hermitian Batched matrix-
matrix multiplication, matrix-vector multiplication and 2nd
rank update operations are presented on NVIDIA Tesla K40c
graphics processor with the use of MAGMA library.

Keywords
MAGMA library, BLAS operations, Batched computation,
Hermitian small matrix.

1. INTRODUCTION
The origin of Basic Linear Algebra Subprograms (BLAS)
standard was observed from 1973, when Hanson, Krogh, and
Lawson published an article that described the advantages of
adoption of basic collection procedures for linear algebra. It
led to the creation of a linear algebra package BLAS [1],
which became quite successful and competitive. It was
adopted as a standard and first used in LINPACK [2]
package. Initially BLAS consisted of 2 levels [3], when the
3rd level was suggested[4], which included the most
important actions associated with matrices, LINPACK was
reprocessed to LAPACK [5] in order to use the newly
created 3rd level of BLAS.The MAGMA package is a linear
algebra library as LAPACK but it is intended for
heterogeneous Multicore+GPU architectures [6]. MAGMA
aims to develop algorithms and structures of linear algebra in
graphics processors and hybrid multicore systems.
CUBLAS is a CUDA library on GPU produced by NVIDIA.
LAPACK is a Fortran library on CPU. MAGMA calls some
subprograms of CUBLAS and LAPACK, but involves more
complex procedures. Upon the emergence of the
heterogeneous system with accelerators, a software shortage
of especially many small matrix operations of linear algebra
was observed. Many modern works use solutions for many
small matrix operations. The Batched subprograms have
recently been integrated into MAGMA, which solve many
small problems and are called MAGMA Batched
subprograms. These subprograms are based on Batched
BLAS package. NVIDIA already presents the optimized
Batched BLAS applications in CUBLAS [7] package.
The aim of the Batched subprograms is the parallel solution
of set of problems independent of each other. If one matrix is
large enough, then the Batched subprograms are not required
to transfer it to GPU, but when the matrices are small (for

example,the sizes of which are less than or equal to 512) the
amount of work needed to perform the factorization cannot
saturate the device, therefore there is a need for Batched
subprograms.
This work presents the matrix-matrix multiplication, matrix-
vector multiplication Batched BLAS operations of small
Hermitian matrices, as well as the realizations of 2nd rank
update functions on Tesla K40c graphics processor using the
MAGMA library, and gives their performances with the
amounts of 1000 and 2000 in the case of processing of small
matrices. Note, that there exist works [8,9] on the above
mentioned Batched functions, concerning the general
matrices, but there are still no papers on Hermitian matrices.
The implementation of the above mentioned functions in a
hybrid system is realized through the latest edition of
MAGMA 2.2.0 [10] library, in which the Hermitian Batched
functions have just been integrated. It should also be noted
that in the structure of the functions of the recently released
CUBLAS library there are no Batched operations associated
with the Hermitian matrices.
The second section of the article presents the stages of
processing of the Hermitian Batched matrix-matrix
multiplication in the hybrid CPU-GPU system.The test
results are presented in the third section, which were made in
the case of processing of 1000 and 2000 amount of small
matrices. The fourth section is the conclusion.

2. BATCHED IMPLEMENTATION FOR
GPU
The name of a Batched BLAS routine follows, and extends
as needed, the conventions of the corresponding BLAS
routine. In particular, the name is composed of 5 characters,
specifying the BLAS routine and described below, followed
by the suffix_batched:
 The first character in the name denotes the data type of the
matrix, as follows:

- s float,
- d double,
- c single complex,
- z double complex.

Characters two and three in the name refer to the kind of
matrix involved, as follows:

- ge All matrices are general rectangular,
- he One of the matrices is Hermitian,
- sy One of the matrices is symmetric,
- tr One of the matrices is triangular.

The fourth and fifth, and in one case sixth, characters in the
name denote the operation.
For the Level 3 Batched BLAS, the operations are given as
follows:

- mm Matrix-matrix product,
- rk Rank-k update of a symmetric or Hermitian

matrix,
- r2k Rank-2k update of a symmetric or Hermitian

matrix,

- sm Solve a system of linear equations for a matrix
of right-hand sides.

The arguments that specify options are of enum type with
names side, transa, transb, trans, uplo, and diag. These
arguments, along with the values that they can take, are
described below:
side has two possible values which are used by the routines
as follows:
Side=MagmaLeft: Specifes to multiply a general matrix by
symmetric, Hermitian, or triangular matrix on the left.
Side=MagmaRight: Specifes to multiply general matrix by
symmetric, Hermitian, or triangular matrix on the right.
transa, transb, and trans can have three possible values each,
which is used to specify the
following:
trans=Magma_NoTrans: Operate with the matrix as it is;
trans=Magma_Trans: Operate with the transpose of the
matrix;
trans=Magma_ConjTrans: Operate with the conjugate
transpose of the matrix.
uplo is used by the Hermitian, symmetric, and triangular
matrix routines to specify whether
the upper or lower triangle is being referenced, as follows:
uplo=MagmaLower: Lower triangle;
uplo=MagmaUpper: Upper triangle.
The batchCount argument is an integer that indicates the
number of matrices to be processed.
The description of the matrix consists of the array name
(arrayA, arrayB, or arrayC) followed by an array of the
leading dimension as declared in the calling function (lda,
ldb, or ldc). The ith values of the arrayA, arrayB, and arrayC
are pointers to the arrays of data Ai, Bi, and Ci, respectively.
Similarly, the values of lda[i], ldb[i], and ldc[i] correspond
to the leading dimensions of the matrices Ai, Bi, and Ci,
respectively.
Arrays of scalars are named alpha and beta, where values at
position i correspond to the α and β scalars for the BLAS
operation involving matrices Ai, Bi, and Ci.
Of the three subprograms we will only show the
implementation of the batched matrix-matrix multiplication
on GPU, because the realization of the remaining two
functions is performed on the same principle, using the
appropriate arguments.
Batched Hermitian matrix-matrix multiplication implements
the following computation:
for (int p = 0; p <batchCount; ++p) {
 for (int m = 0; m < M; ++m) {
 for (int n =0; n < N; ++n) {
 c_mnp = 0;
 for (int k =0; k < K; ++k)
 c_mnp += A[p][m + k * lda] * B[p][k + n * lda];
 C[p][m+n*ldc]=(*alpha)*c_mnp+(*beta)*C[p][m+
 n*ldc];
 }
 }
}
where A[p], B[p], and C[p] are matrices.
In magmablas, the interface is:
magmablas_chemm_batched(magma_side_t side,
magma_uplo_t uplo, magma_int_t m, magma_int_t n,
magmaFloatComplex alpha, magmaFloatComplex
**dA_array, magma_int_t ldda, magmaFloatComplex
**dB_array, magma_int_t lddb, magmaFloatComplex beta,
magmaFloatComplex **dC_array, magma_int_t lddc,
magma_int_t batchCount, magma_queue_t queue);
This subprogram has one of the following forms:
If side = MagmaLeft, then
If side = MagmaRight, then,

where the matrices A, B, and C are complex Hermitian, and
 and are scalars.

If uplo = MagmaUpper, then only the upper triangular part
of the Hermitian matrix is to be referenced.
If uplo = MagmaLower, then only the lower triangular part
of the Hermitian matrix is to be referenced.
dA_array- array of pointers, dimension(batchCount). Each is
a complex array A of dimension(ldda, ka), where ka is m
when side = MagmaLower and is n, otherwise.
ldda-specifies the first dimension of each A as declared in
the calling (sub) program.
dB_array- array of pointers,dimension(batchCount). Each is
a complex array B of dimension(lddb, n).
lddb- specifies the first dimension of B as declared in the
calling (sub) program.
dC_array- array of pointers, dimension(batchCount). Each is
a complex array C of dimension (lddc, n).
lddc-specifies the first dimension of C as declared in the
calling (sub) program.
batchCount-the number of matrices to operate on.
queue- queue to execute in.
The implementation of this subprogram in the hybrid CPU –
GPU system is performed in the following sequence:

1) In CPU, memory is allocated for A, B and C
matrices via magma_cmalloc_cpu() function of
Magma library. For example, for the matrix A this
function will have the following form:
magma_cmalloc_cpu(&A, lda*n*batchCount).

2) In GPU,memory is allocated for A, B and C
matrices via magma_cmalloc() function of Magma
library. For the matrix A this function will have the
following form: magma_cmalloc(&d_A,
ldda*n*batchCount).

3) In GPU, memory is allocated for arrays consisting
of references directed to the matrices d_A ,d_B
and d_C. For example, for d_A the function
magma_malloc() will have the following form:
magma_malloc((void**)&dA_array, batchCount *
sizeof(*dA_array)).

4) In the memory of the CPU, the matrices A, B and
C are initialized using the function
lapackf77_clarnv() of the LAPACK library.

5) Matrices A, B and C are moved from the CPU
memory to the GPU memory using the
magma_csetmatrix() function. For the matrix A
magma_csetmatrix(n, n*batchCount, a, lda, d_a,
ldda).

6) Before calling the required function, the program
includes the function magma_sync_wtime(queue)
of time performance, which is integrated into the
magma_timer.h library.

7) We call magmablas_chemm_batched () matrix-
matrix function multiplication for Hermitian small
matrices, where the required values of all
arguments are given beforehand, for example, the
dimension of matrices to be entered, the upper or
lower triangular matrix used and the most
important value - batchCount, which indicates
how many matrices are to be processed.

8) After the operation of the function, fix the
implementation time and then calculate the
function operation performance.

9) Using the magma_cgetmatrix() function, the
matrix C is moved from the GPU memory to the
CPU memory.

It is very important to note that any magma program begins
with the initialized function magma_init() and ends with the
magma_finalize() function of finalization.

It should also be noted that in the hybrid system after the
completion of any program, the CPU and GPU memory
should be freed. It is done using the functions
magma_free_cpu () and magma_free (), respectively.

3. EXPERIMENTAL RESULTS
The experiments were conducted on NVIDIA K40c GPU.
The architecture of Tesla K40c consists of 2880 CUDA
processor cores. It is endowed with much higher bandwidth
288 GB/s of message transfer between CPU and GPU,
having 12 GB of global memory per card running at 745
MHz., GDDR5 memory interface, and CUDA C
programming environment.
The operation system of Tesla K40c is Ubuntu 14.04.2 LTS.
Cuda7 programming environment was used for the
realization of programs. MAGMA 2.2.0 package was
installed in accordance with cuda7 environment. For the
compilation of MAGMA library the lapack-3.4.2, clapack-
3.2.1 and atlas-3.10.0 packages were installed. Gcc-4.8,
gfortran-4.8, g ++ - 4.8 and nvcc compilers were used. Such
references were made in make.inc file on libf77blas.a,
libcblas.a, libf2c.a, libcublas.so, libcudart.so, libm.a, libstdc
++.so, libpthread.so, libdl.so, libcusparse.so static and
dynamic libraries. MAGMA 2.2.0 package contains
libmagma.a, libmagmablas.a and libmagma_sparse.a
libraries.
During the experiments the 1000 and 2000 number of small
matrices with the dimension from 32 to 512 were processed.
Figures 1 and 2 show the performance graphics of Batched
multiplication of Hermitian small matrices for single
complex precision and double complex precision cases,
respectively.

Fig. 1. Performance of Batched HEMM in single complex
precision

Fig. 2. Performance of Batched HEMM in double complex

precision

The results show that as in the case of single complex
precision, as well as in the case of double complex
precision,no significant differences in performance are
observed at 1000 and 2000 number of matrix processing.
However, in the case of single complex precision of the
mentioned incoming matrices of all cases, the performance is
3 times higher than the double complex precision. As a result
of the experiments it was found that in the case of single
complex precision, the program does not run at 512
dimension of 2000 number of matrices, it is also not
executed in the case of double complex precision with the
512 dimension of 1000 number of matrices, but the program
does work in the case of 2000 number of matrices not
exceeding 400 dimension.
With respect to the execution time, only note that the
processing duration in the case of single complex precision
is up to 1 second, and in the case of double complex
precision it is up to 2 seconds.
Figures 3 and 4 depict the performance graphs of Hermitian
small matrices and vectors of Batched multiplication for the
cases of single complex precision and double complex
precision, respectively.

Fig. 3. Performance of Batched HEMV in single complex
precision.

Fig. 4. Performance of Batched HEMV in double complex
precision.

The results obtained in the operation of the matrix-vector
multiplication show that as in the case of matrices, as well
as in this case, in both single complex precision and
double complex precision cases at 1000 and 2000 numbers
of matrix processing no significant differences are
observed. Here again, the performance of single complex
precision exceeds that of double complex precision for 3
times.
Execution time duration in both single complex precision
and double complex precision cases does not exceed 1
second.

Figures 5 and 6 show the performance graphics of Batched
2nd rank update operation of Hermitian small matrices for
single complex precision and double complex precision
cases, respectively.

Fig. 5. Performance of Batched HER2K in single complex
precision

Fig. 6. Performance of Batched HER2K in double complex

precision.

In the case of Batched 2nd rank update operation of
Hermitian small matrices, like in the aforementioned two
operations, again no significant differences in performance
are observed at 1000 and 2000 numbers of matrix
processing. Here the performance of the single complex
precision exceeds that of double complex precision for 2
times. It should also be noted that in case of double precision
the matrix dimension of 2000 number must not exceed 400.
In the case of this operation the execution time is 1 second in
all cases.

6. CONCLUSION
The performances of Batched matrix-matrix multiplication,
matrix-vector multiplication and 2nd rank update operations
for Hermitian small matrices were presented in CPU-GPU
hybrid system using Tesla K40c graphics processor. In this
paper the results of the three Batched calculations are
presented for Hermitian small matrices using the MAGMA
2.2.0 library, because they are missing in the structure of
Batched functions of even recently released CUBLAS
library. Based on the obtained results, we came to the
following conclusion that in the case of matrix processing of
dimensions from 32 to 512 with both 1000 and 2000
numbers, in the three mentioned Batched calculations no
significant differences were observed for single complex
precision and double complex precision cases. We also
obtained that in the multiplications of matrices and matrix-
vector of the single complex precision case the performance

exceeds the double complex precision case for 3 times, and
in the case of 2nd rank update operation it exceeds for 2
times. With respect to the runtime, only note that the
duration of the operations is 1 and 2 seconds.

REFERENCES
[1] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh. Basic linear algebra subprogramsfor fortran usage.
ACM Trans. Math. Softw., 5(3), pp. 308-323, September
1979.
[2] J. J. Dongara, C. B. Moler, J. R. Bunch, and G. W.
Stewart. LINPACK Users' Guide. SIAM,
Philadelphia, PA, 1979.
[3] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling,
and Richard J. Hanson. An extendedset of FORTRAN basic
linear algebra subprograms. ACM Trans. Math. Softw.,
14(1), pp. 1-17,1988.
[4] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and
I. S. Du_. A set of level 3 basic linearalgebra subprograms.
ACM Trans. Math. Softw., 16(1), pp. 1-17, March 1990.
[5] Edward Anderson, ZhaojunBai, Christian Bischof, Suzan
L. Blackford, James W. Demmel,Jack J. Dongarra, Jeremy
Du Croz, Anne Greenbaum, Sven J. Hammarling, Alan
McKenney,and Danny C. Sorensen. LAPACK Users' Guide.
Society for Industrial and AppliedMathematics,
Philadelphia, Third edition, 1999.
[6] Matrix algebra on GPU and multicore architectures
(MAGMA), 2014. Available
at http://icl.cs.utk.edu/magma/.
[7] CUBLAS 7.5, 2016. Available at
http://docs.nvidia.com/cuda/cublas/.
[8] Ahmad Abdelfattah, AzzamHaidar, StanimireTomov,
andJack Dongarra: Performance, Design, and Autotuning
ofBatched GEMM for GPUs. High Performance Computing,
pp.21-38, June 2016.
[9] Ahmad Abdelfattah, AzzamHaidar, StanimireTomov,
Jack Dongarra : On the Development of Variable Size
Batched Computation for Heterogeneous Parallel
Architectures. Parallel and Distributed Processing
Symposium Workshops, 2016 IEEE International.
[10] Jack Dongarra, AzzamHaidar, Sven Hammarling,
Jonathon Hogg, Pedro Valero-Lara, Samuel D. Relton,
StanimireTomov and MawussiZounon : A Proposed API for
Batched Basic LinearAlgebra Subprograms. MIMS EPrint:
2016.25, Manchester Institute for Mathematical Sciences
School of Mathematics, The University of Manchester, UK,
April 2016.

http://icl.cs.utk.edu/magma/
http://docs.nvidia.com/cuda/cublas/

