
Virtual Process Controlling 
Juri, Koval 

Shevchenko National University of Kyiv 
Kyiv, Ukraine 

e-mail: smith@uis.kiev.ua 

ABSTRACT 
This paper provides the description of mechanism for virtual 
process controlling. The set of functions for such controlling 
is proposed and discussed. 

Keywords 
Virtual process, process controlling. 

1. INTRODUCTION
Usual process in operating system [1] may be controlled. In 
UNIX operating system [2] the set of function to manage 
such control include next functions: fork(), exec(), kill(), 
nice(). In the next part of this paper such usual process may 
be mentioned as atomic. The virtual process, on contrast to 
atomic process, have no operating system to perform control 
over process. So the task of this paper is to determine the set 
and location of functions to perform control over virtual 
process. To solve this task let discover the role of each 
mentioned function in process controlling. 

2. APPOINTMENT OF FUNCTIONS
FOR PROCESS CONTROLLING 
The fork() function is the only way to create new atomic 
process in UNIX operating system. So this determine the 
role of this function in process controlling. This role is create 
a process. 

The exec() function is perform the action of code changing. 
As a result, the role of this function is code modification. It 
must be noted, that for UNIX and UNIX-like operating 
systems other methods of code modification are prohibited. 

The kill() function perform the messaging or communicating 
task and finishing task. So, two roles are determined for this 
function: delete and communicate. 

The nice() function is changing the activity of process. Non-
UNIX operating systems prefer the notion of priority, but it 
is clear that nice is nice. The role of this function is to 
determine the processor resource availability. 

So, five roles of functions are identified: create, delete, 
communicate, modify, and setting of activeness. 
Determining of function to perform such roles for virtual 
process is the task of next section. 

3. SET OF FUNCTION TO CONTROL
VIRTUAL PROCESS 
3.1. Creating of virtual process 
As stated in [3] virtual process can be started as usual atomic 
process. But it is very useful idea of fork() function to split 
process in two. So, split() function produce new virtual 
process like fork(). Other function that must be present for 
virtual process is function like usual function call. It is 
obvious that for compiling programming system there is no 
such function. But for interpreting the is eval() or call(0 

functions. This functions produce a new part of process. As 
for virtual process the function run() will do the same. 

3.2. Code modification of virtual process 
Code modification may be done in many ways, but the 
overloading is the simplest. So function overlay() do this for 
virtual process. 

3.3. Communication inside virtual process 
Signal mechanism that used for kill() function can lost 
information. For the beginning of UNIX age this was 
acceptable. But nowadays messaging subsystems are wery 
good. So function for communicate will be cast(). This is 
more shorter then message. Also broadcast() can be used for 
broadcast communicating. 

3.4. Finishing of virtual process 
For internal virtual process finishing it is not enough to exit 
from process like to atomic one. The are many atomic 
process that create one virtual. So internal finishing of virtual 
process is like external finishing of process by kill(-9) for 
example. Nevertheless the name finite() is more better then 
terminate or kill. 

3.5. Controlling of virtual process 
activeness 
There is no special function for such controlling of virtual 
process. The activeness of virtual process is a number of 
atomic processes that are parts of the virtual process. So 
creating new atomic processes makes process faster or 
reducing the number of atomic processes makes it slower. 

3.6. Joining of virtual processes 
New possibility exists for virtual process is joining. It is 
possible as every virtual process uses separate name space. 
As a result joining of such spaces produce virtual process 
joining. 

4. CONCLUSION
The next roles for virtual process controlling proposed: 
creating, code modification, communicating, finishing, and 
joining. Functions for each role are proposed. 

REFERENCES 
[1] A. Silberschatz, P. B. Galvin, and G. Gagne, 
OPERATING SYSTEM CONCEPTS with JAVA, 6th ed., 
JOHN WILEY & SONS, INC., USA, p. 1251, 2004 
[2] K. Thompson, D. M. Ritchie, UNIX PROGRAMMER’S
MANUAL, Bell Labs, USA, p. 194, November 1971, 
https://www.bell-labs.com/usr/dmr/www/ 
1stEdman.html 
[3] Iu. V. Krak, Iu. V. Koval, and A. B. Stavrovskyi, Virtual 
process: definition and application for gestures interface 
system creation, Bulletin of Taras Shevchenko National 
University of Kyiv, Series Physics & Mathematics, vol. 1, 
pp. 141-144, 2015 




