
On Formalization of Operating Systems Behaviour
Verification

Alexey Khoroshilov

Institute for System Programming of the Russian Academy of Sciences
Moscow, Russia

e-mail: khoroshilov@ispras.ru

ABSTRACT
Operating systems are responsible for correct
implementation of computation environment properties that
are usually assumed during verification of application
software like virtual address space, scheduling, time
management, etc. Formal analysis of implementation of
these aspects is often implemented using specific models and
verification techniques. As a result comprehensive
verification of operating systems requires a systematic
combination of various verification techniques applied for
checking different properties. The paper proposes a generic
approach to formalization of operating systems behavioural
properties verification that allows to apply wide range of
verification techniques and to support formal reasoning of
their compositions.

Keywords
Operating systems, formal verification, behavioural
specification.

1. INTRODUCTION
Behaviour of application software is usually formalized
using concepts of programming languages like variables,
heap, stack, data types, functions, etc. Models of programs
written in low level languages like C may operate with low-
level memory models such as an array of bytes. Models of
concurrent program may take into consideration memory
consistency issues, synchronous and asynchronous
communications.

The task of formalization of operating systems behaviour is
complicated by the fact that it is the operating system that is
responsible for management of all the computation
environment properties that are usually assumed to be
correct during verification of application software. It
includes management of virtual address spaces,
process/thread migrations, scheduling, communication with
devices via interrupts and direct memory access, etc.

Various approaches were proposed how to express low-level
operational semantics of operating systems, e.g., using
automaton hardware model of CPUs [1] or specialized
imperative languages [2]. It enables verification of specific
properties using specific methods up to leaving some aspects
of reasoning in informal ground [3]. The problem was
mitigated in the scope of particular projects [4,5], but there
were no systematic solutions proposed.

The paper presents a more generic approach to formalize the
operating system verification task that should allow to apply
wider range of verification techniques and to support formal
reasoning of their compositions.

Section 2 contains definitions of required terms and basic
classification of behavioural properties. Section 3 describes
how abstraction applies to verification task and presents an
approach to verification of operating systems using different

verification techniques. Section 4 wraps up conclusions and
discusses possible future directions.

2. LOW LEVEL MODEL
2.1. Behavioural Model
Let us consider the behaviour of an operating system on a
particular hardware in fixed configuration.

HWTrace is a set of potential events in hardware like a
change of value in a register or in a memory cell, an interrupt
event, a message sending b a bus, etc. An element of the set
does not only represent a type of an event, but it also
includes all attributes of the event such as values, timing, etc.
So we assume that any two possible events are represented
by different elements of HWTrace. There is an anti-
reflexive binary relation ≺dep that means an explicit or
implicit dependency between elements such as the second
event can happen only later than the first one.

Event trace is a finitary partially-ordered set (T, ≼), where
 T ⊆ HWEvents ;
 partial order ≼ is a transitive and reflexive closure of ≺dep,

i. e. ≼ = ({(e,e)|e ∈ T}≺dep|T)*, that defines the order of
events in time and their dependencies between them;

 ≺dep|T = ≺dep ∩ T×T is a projection of ≺dep on T;
 finitary means ∀ e ∈ T the set {e' ∈ T| e'≼e} is finite.

Event trace represents a hardware execution, where T
contains all events happened. Finitarity expresses the
assumption that only finite number of events can happen
during finite time. In different event traces the same events
can be ordered or unordered, so there is no partial order on
HWEvents. Instead there is a dependency relation ≺dep that
can be non-transitive and even its transitive closure can be
cyclic.

We will use the following denotations:
 (X) — set of all subsets of X;
 po(X) — set of all partially-ordered subsets of X;
 fpo(X) — set of all partially-ordered finitary subsets of X;
 Traces(HWEvents, ≺dep) ⊆ fpo(HWEvents) — set of all

traces of HWEvents with a dependency relation ≺dep;
 directed(X, ≼) = {X' ⊆ X| ∀ T1,T2 ∈ X' ∃ T3 ∈ X':

T1 ≼ T3 ∧ T2 ≼ T3)} — set of all directed subsets of
(X, ≼);

 dcpo(X, ≼) = {X' ∈ (X)| ∀ Y ∈ directed(X',≼|X')
sup(Y) ∈ X'} — set of all directed complete partially
ordered subsets of X;

 Prefix(T, ≼) = {(T',≼') | T' ⊆ T ∧ ∀ e ∈ T ∀ e' ∈ T'
(e≼e') ⇒ e ∈ T' ∧ ≼' = ≼|T' } - set of all prefixes of
partially ordered set (T, ≼);

 ≼pre = {(T1,T2) | T1 ∈ Prefix(T2)} — is_prefix relation;
 cleft(X) = {X' ∈ dcpo(X, ≼pre) | ∀ (T, ≼) ∈ X'

Prefix(T, ≼) ⊆ X'} — set of all dcpo-subsets of (X, ≼pre)
left-closed w.r.t. partial orders of its elements.

A set of all possible event traces for (HWEvents,≺dep) is
HWTraces ∈ cleft(Traces(HWEvents,≺dep)), where all
possible means that all the traces are compliant to hardware
specification. Thus, HWTraces represents a model of the
hardware managed by an operating system.

If there is an infinite sequence of event traces in HWTraces
such that each next trace extends the previous one then
supremum of the sequence also is in the HWTraces. That is
why it is required HWTraces to be a dcpo-subset. If an
event trace is possible that any its prefix is possible, so it is
required HWTraces to be left-closed w.r.t. partial orders of
its elements.

There is a number of formalisms suitable for compact
description of event trace sets including Petri nets [6], flow
event structures [7], event structures [8], Pomsets [9],
process algebras like CCS, CSP, ACP [10,11,12].

Behavioural model of an operating system that manages
hardware can be considered as a subset of all possible event
traces of the given hardware platform
HWTracesOSImage ∈ cleft(Traces(HWEvents,≺dep)), where
HWTracesOSImage ⊆ HWTraces.

Behavioural property of operating system is defined in a
straightforward way as a set of sets of event traces
OSValid ⊆ cleft(HWTraces). Behavioural model of an
operating system is considered to have a property OSValid
iff HWTracesOSImage ∈ OSValid.

So far, we defined the behavioural model of operating
systems in terms of collective trace semantics of events
happened in hardware level. As far as the given trace
semantics preserves concurrency of events, it can be used
with verification techniques based on both true concurrency
models and interleaved models.

2.2. Abstract Models
Following the ideas of abstract interpretation [13] let us
define a concept of abstraction.

Let us denote a lattice of all subsets of cleft(HWTraces) as
L ≡ ((cleft(HWTraces)), ⊆, , ∩). Then an abstraction
(A, γ) is a pair (A, γ), where A – an abstract domain, and
γ: A → L is an injective function.

Partial order ⊆ of L defines the partial order ⊑ of A
a1 ⊑ a2 ≡ γ(a1) ⊆ γ(a2) since γ is injective. Function of best
over-approximation α: L → A maps the precise property
r ∈ L to an abstract property α(r) ∈ A:
 r ⊆ γ(α(r)) over-approximation
 ∀ a ∈ A r⊆γ(a) ⇒ γ(α(r))⊆γ(a) best over-approximation

It is known [10] that there exists a function of best over-
approximation α iff posets L and A with functions α and γ
compose a Galois connection (α,γ): L ⇋ A.

2.3. Properties Classification
Property Rm ∈ L is called a negative property iff
∀ P ∈ cleft(HWTraces) P ∉ Rm ⇒ ∀ P' ∈ cleft(HWTraces)
P ⊆ P' ⇒ P' ∉ Rm. Class of negative properties HNeg is the
most practically useful one among all properties in collective
trace semantics.

Dual class of positive properties HPos includes properties
Rm ∈ L: ∀ P ∈ Rm ∀ P' ∈ cleft(HWTraces) P ⊆ P' ⇒
P' ∈ Rm.

Let us define an auxiliary function Pchar that maps a set of
event traces P and a property Rm ∈ L to Pchar(P, Rm) =
{TS ⊆ P| Prefixes(TS) ∉ Rm
 ∧ ∀ TS' ⊂ TS Prefixes(TS') ∈ Rm},
where Prefixes(TS) = {t ∈ HWTraces| t'∃ ∈ TS:
t ∈ Prefix(t')} — a union of all prefixes of traces from
TS ∈ (HWTraces). Let us denote Pchark(P, Rm) =
{TS ∈ Pchar(P, Rm)| |TS| = k}. Then Rm ∈ HNeg is called a
negative property of cardinality k HNk iff
∀ P ∈ cleft(HWTraces)\Rm Pchark(P, Rm) ≠ ∅.

Well-known abstraction of collective trace semantics is the
individual trace semantics. Class of properties precisely
represented in individual trace semantics Hjoin is a subclass
of negative properties, where
Hjoin = {Rm ∈ (cleft(HWTraces))| ∃ Pm ⊆ HWTraces:
∀ P ∈ cleft(HWTraces) P ∈ Rm P ⊆ Pm}.
Moreover, Hjoin equals the class of negative properties of
cardinality 1 HN1.

3. OPERATING SYSTEM VERIFICATION
3.1. Verification in Abstraction
The task of verification is to check if a behavioural model of
an operating system HWTracesOSImage has a property R, i.e.,
HWTracesOSImage ∈ R. As far as low level model is too
detailed and too complex, abstraction is a typical approach to
overcome those problems.

For an abstraction (α,γ): L ⇋ A the approach looks as
follows. Behavioural model HWTracesOSImage is represented
by AOS ∈ A such that α({HWTracesOSImage}) ⊑ AOS. If the
property R has a precise representation in A AR ∈ A then the
verification task can be reduced to checking AOS ⊑ AR.

There are two kinds of potential problems of verification
methods: unsoundness and imprecision.
 unsoundness means situations when verification misses

actual bugs;
 imprecision means situations when verification reports

false alarms.

The assumptions made guarantee that the approach above is
sound: AOS ⊑ AR ⇒ α({HWTracesOSImage}) ⊑ AOS ⊑ AR ⇒
γ(α({HWTracesOSImage})) ⊆ γ(AOS) ⊆ γ(AR) ⇒
{HWTracesOSImage} ⊆ γ(α({HWTracesOSImage})) ⊆ γ(AR) ⇒
HWTracesOSImage ∈ γ(AR).

Lack of precision happens if AOS ≠ α({HWTracesOSImage})
(Picture 1). Gap between α({HWTracesOSImage}) and AOS

may lead to false alarms.

Picture 1. Verification of precisely representable property

If the property R does not have a precise representation in A
(γ(α(R)) ≠ R) then the picture becomes more complex
(Picture 2).

Picture 2. Verification of precisely non-representable
property

To keep soundness it is required to choose AR ∈ A such that
AR ⊑ α(OSReq) and to check if AOS ⊑ AR. Here α is a
function of best under-approximation dual to α. The problem
of imprecision in this case can be very significant up to
missing any sense. For example, properties not belonging to
HNeg are mapped by α for individual trace semantics
abstraction to ∅ and check if AOS ⊑ ∅ is pointless. Thus, it is
highly desirable to choose abstraction that allows to
represent target property precisely.

3.2. Abstraction and Property Classes
An important requirement for soundness of verification is to
choose the approximation AOS: α({HWTracesOSImage}) ⊑ AOS

or γ(α({HWTracesOSImage})) ⊆ γ(AOS). This means AOS has
to represent the exact set of event traces that operating
system can produce optionally with other set of traces. This
requirement can be relaxed for some kinds of properties.

First of all, let us consider a class of properties
HClass ⊆ (cleft(HWTraces)). It induces abstraction
(A, γHClass) = (HClass, id), where the abstract domain
equals HClass and γHClass is an identity function. In this case
⊑ on A equals subset relation ⊆:
 a1 ⊑ a2 ≡ γ(a1) ⊆ γ(a2) = a1 ⊆ a2.

If HClass is a complete lattice and
Rtrue = cleft(HWTraces) ∈ HClass, then there exists a
function of the best over-approximation
αHClass: (cleft(HWTraces)) → HClass that maps each
property to a property from HClass representing the original
one best of all. By the way, αHClass defines a preorder relation
⊑HClass: R1 ⊑HClass R2 ≡ αHClass(R1) ⊆ αHClass(R2) that can be
propagated to any other abstraction (A, γ):
a1 ⊑HClass a2 ≡ γ(a1) ⊑HClass γ(a2).

Theorem. If abstraction (HClass, id) has a function of the
best over-approximation αHClass, and the property R belongs
to HClass (R ∈ HClass) then from existence of AOS such
that α({HWTracesOSImage}) ⊑HClass AOS and AOS ⊑ α(R)
follows correctness of the operating system regarding
property R (HWTracesOSImage ∈ R).
Proof.
(1) AOS ⊑ α(R) ⇒ γ(AOS) ⊆ γ(α(R)) ⊆ R ⇒ γ(AOS) ⊆ OSR.
(2) α({HWTracesOSImage}) ⊑HClass AOS

⇒ {HWTracesOSImage} ⊑HClass γ(AOS)
⇒ αHClass({HWTracesOSImage}) ⊆ αHClass(γ(AOS))
⇒ [αHClass — over-approximation]
{HWTracesOSImage} ⊆ αHClass({HWTracesOSImage}) ⊆
⊆ αHClass(γ(AOS))
⇒ [(1) and αHClass — over-approximation for γHClass = id]
{HWTracesOSImage} ⊆ αHClass(γ(AOS)) ⊆ R
 ⇒ HWTracesOSImage ∈ R. □

For example, for HClass = HNeg the abstraction
(HNeg, id) has a function of the best over-approximation
αHNeg:
αHNeg(R) = {P ∈ cleft(HWTraces)|∃ P' ∈ R: P ⊆ P'} = ↓R

Correspondingly, preorder ⊑HNeg is as follows:
R1 ⊑HNeg R2 ≡ ↓R1 ⊆ ↓R2 = ∀ P ∈ R1 ∃ P' ∈ R2: P ⊆ P'

For singletons it means {P1} ⊑HNeg {P2} ≡ P1 ⊆ P2.

It justifies the conclusion obvious from intuition that if
γ(AOS) is a superset of a set of all event traces produced by
target operating system then the approximation AOS could be
soundly used for checking properties of negative class
HNeg.

3.3. Operating Systems Verification
Let us consider a task of operating system verification
against a set of requirements OSValid ⊆ cleft(HWTraces).
It is suggested to decompose the requirements as a finite
hierarchy of properties, where leaf properties are convenient
for some verification method.

A parent-child relation in the hierarchy means that the child
property is a subproperty of the parent property
(Rparent ⊆ Rchild), and the intersection of all the children
should cover the parent property (Rparent = ∩Rchild). As a
result checking of all leaf properties will lead to the checking
of the root property.

Picture 3 demonstrates the interaction between the main
entities participating in verification of a leaf property.
Operating system and hardware exist in a physical world and
they can be "felt" in some sense. The property of the
operating system and highly coupled concept of "satisfy"
relation ⊨ cannot be easily "felt", while many properties
have quite transparent representation in the physical world.

Picture 3. Overview of operating system verification

Low-level models HWTracesOSImage, R and ∈ represent in
mathematical world a composition of operating system and
hardware, requirements to operating system and "satisfy"
relation, correspondingly. But these mathematical objects
exist hypothetically, since it is too complex to construct
them. Actual analysis is applied to abstract behavioural
model AOS, abstract property AR and relation "satisfy"
between them. These mathematical objects ignores many
details of low-level models.

While AOS and AR can be elements of different abstractions,
we consider the case when AOS and AR are elements of the
same abstract domain A with partial order ⊑ playing the role
of the "satisfy" relation ⊨. There is a hypothetical mapping
between the abstract domain A and the low-level models
γ : A → L and, possibly, a function of the best over-
approximation α: L → A. Ideally, the abstract domain should

be chosen so that it is able to precisely represent the target
property R as AR ∈ A and there is a function of the best
over-approximation α.

The target property is formalized as AR. There is a need to
check if AR correctly represents R, but in general case it can
only be done mentally.

The next step is to choose an element AOS ∈ A that soundly
represents the target operating system. To simplify the
analysis of this fact, the choice can be done taking into
account specifics of the target property. It may allow to relax
the requirements to the relation between the low-level
behavioural model and the abstract one:
 α({HWTracesOSImage}) ⊑HClass AOS if R ∈ HClass.

Finally, the original verification task of checking
HWTracesOSImage ∈ R is reduced to the check AOS ⊑ AR that
can be formally done using some verification method.

Any of the steps above can produce additional assumptions
or limitations of verification methods that should be
analyzed and verified separately. It can be considered that
these extra properties are added to the target hierarchy of
requirements and are verified using other verification
methods according to the same scheme.

Using a property from the hierarchy for proving another
property should be done to avoid cyclic dependencies
between them. Such cyclic dependencies can happen
sometimes, for example, if the dependencies are only used
for induction step, but validness of the dependencies should
be carefully managed.

The proposed approach for operating system verification
using different verification techniques includes the following
steps:
1. Requirements to be verified are represented as a finite
hierarchy of properties of the system under verification.
2. For each (leaf) property R of the hierarchy
2.1. abstraction (A, γ) chosen so that the target property R
has a precise representation in the abstraction AR ∈ A;
2.2. analysis done to demonstrate that AR correctly
represents the target property R;
2.3. abstract behavioural model of operating system chosen
AOS ∈ A;
2.4. analysis done to demonstrate that the chosen model AOS

adequately represents the actual behaviour of combination of
operating system and hardware with respect to the target
property R (e.g., α({HWTracesOSImage}) ⊑HClass AOS);
2.5. formal proof of the relation AOS ⊑ AR done using one or
another verification method;
2.6. any steps of 2.1-2.5 can produce a conditional result
under some assumptions or limitations that should be added
to the hierarchy (step 1) for separate analysis.

4. CONCLUSION
Contributions of the paper include a systematic approach to
formalization and reasoning about verification of
behavioural properties of operating systems and a generic
definition of conditions sufficient for sound simplification of
behavioural models for verification of properties of a
particular class.

The proposed approach provides a ground to explicitly
define assumptions made and to formally reason about them.
It is not so specific for operating systems and can be useful
to any complex system under verification. But the operating
systems are the most demanding application domain since

accurate and comprehensive verification of operating
systems requires a systematic combination of various
verification techniques for checking different properties.

Applicability of the approach is limited by behavioural
properties that can be expressed in collective event trace
semantics. For example, probabilistic requirements are not
covered by the given model. But the approach can be
extended in future to cover them as well.

Another future direction is the development of a case study
demonstrating how the approach can be applied to
verification of a particular operating system, for example, for
combining deductive verification of generic kernel code and
proof of validity of assumptions made in memory model
implemented in verification tools [14].

5. ACKNOWLEDGEMENT
This study was supported by RFBR grant #17-07-00734.

REFERENCES
[1] E. Cohen, W. Paul, S. Schmaltz. Theory of multi core
hypervisor verification. In Proceedings of the 39th
Conference on Current Trends in Theory and Practice of
Computer Science, SOFSEM’13, Berlin, Heidelberg, 2013.
[2] S. Winwood, G. Klein, T. Sewell, J. Andronick, D. Cock,
M. Norrish. Mind the gap: A verification framework for low-
level C. In S. Berghofer, T. Nipkow, C. Urban, M. Wenzel,
editors, Proc. TPHOLs’09, volume 5674. Springer, 2009.
[3] C. Baumann, T. Bormer, H. Blasum, S. Tverdyshev.
Proving memory separation in a microkernel by code level
verification. In Proc. AMICS/ISORC, 2011.
[4] C. Baumann, B. Beckert, H. Blasum, T. Bormer.
Ingredients of Operating System Correctness. In Proc.
embedded world 2010.
[5] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T.
Sewell, R. Kolanski, G. Heiser. Comprehensive formal
verification of an OS microkernel. ACM Transactions on
Computer Systems, Volume 32, Number 1, pp. 2:1-2:70,
February, 2014.
[6] C.A. Petri. Fundamentals of a theory of asynchronous
information flow. In Information Processing 1962,
Proceedings of the IFIP Congress 62, pages 386–390,
Munich, Germany, 1962. North Holland Publishing
Company.
[7] G. Boudol, I. Castellani. Flow models of distributed
computations: Three equivalent semantics for CCS.
Information and Computation, 114:247–314, 1994.
[8] G. Winskel. An introduction to event structures. In Linear
Time, Branching Time and Partial Order in Logics and
Models of Concurrency, LNCS 354, pages 364–397.
Springer-Verlag, 1988.
[9] G. Boudol, I. Castellani. On the semantics of
concurrency: partial orders and transition systems.
Proceedings TAPSOFT-87. LNCS 249, pages 123–137.
Springer-Verlag, 1987.
[10] R. Milner. A Calculus of Communicating Systems.
LNCS 92. Springer-Verlag, 1980.
[11] C.A.R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, 1978.
[12] J.A. Bergstra, J.W. Klop. Algebra for communicating
processes with abstraction. Journal of Theoretical Computer
Science, 37:77–121, 1985.
[13] P. Cousot, R. Cousot. Systematic design of program
analysis frameworks. In Proceedings of the 6th POPL (San
Antonio, TX), ACM Press, New York, 269–282.
[14] M. Mandrykin, A. Khoroshilov. A Memory Model for
Deductively Verifying Linux Kernel Modules. In Proc.
PSI-2017.

