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ABSTRACT
Operating  systems  are  responsible  for  correct 
implementation of computation environment properties that 
are  usually  assumed  during  verification  of  application 
software  like  virtual  address  space,  scheduling,  time 
management,  etc.  Formal  analysis  of  implementation  of 
these aspects is often implemented using specific models and 
verification  techniques.  As  a  result  comprehensive 
verification  of  operating  systems  requires  a  systematic 
combination of  various verification techniques applied for 
checking different properties.  The paper proposes a generic 
approach to formalization of operating systems behavioural 
properties  verification  that  allows  to  apply  wide  range  of 
verification techniques and to support  formal reasoning of 
their compositions.
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1. INTRODUCTION
Behaviour  of  application  software  is  usually  formalized 
using  concepts  of  programming  languages  like  variables, 
heap, stack, data types, functions, etc. Models of programs 
written in low level languages like C may operate with low-
level memory models such as an array of bytes. Models of 
concurrent  program  may  take  into  consideration  memory 
consistency  issues,  synchronous  and  asynchronous 
communications.

The task of formalization of operating systems behaviour is 
complicated by the fact that it is the operating system that is 
responsible  for  management  of  all  the  computation 
environment  properties  that  are  usually  assumed  to  be 
correct  during  verification  of  application  software.  It 
includes  management  of  virtual  address  spaces, 
process/thread migrations, scheduling,  communication with 
devices via interrupts and direct memory access, etc.

Various approaches were proposed how to express low-level 
operational  semantics  of  operating  systems,  e.g.,  using 
automaton  hardware  model  of  CPUs  [1]  or  specialized 
imperative languages [2]. It enables verification of specific 
properties using specific methods up to leaving some aspects 
of  reasoning  in  informal  ground  [3].  The  problem  was 
mitigated in the scope of particular projects [4,5], but there 
were no systematic solutions proposed.

The paper presents a more generic approach to formalize the 
operating system verification task that should allow to apply 
wider range of verification techniques and to support formal 
reasoning of their compositions.

Section 2 contains definitions of  required terms and basic 
classification of behavioural properties. Section 3 describes 
how abstraction applies to verification task and presents an 
approach to verification of operating systems using different 

verification techniques. Section 4 wraps up conclusions and 
discusses possible future directions.

2. LOW LEVEL MODEL
2.1. Behavioural Model
Let us consider the behaviour of an operating system on a 
particular hardware in fixed configuration.

HWTrace is  a  set  of  potential  events  in  hardware  like  a 
change of value in a register or in a memory cell, an interrupt 
event, a message sending b a bus, etc. An element of the set  
does  not  only  represent  a  type  of  an  event,  but  it  also 
includes all attributes of the event such as values, timing, etc. 
So we assume that any two possible events are represented 
by  different  elements  of  HWTrace.  There  is  an  anti-
reflexive  binary  relation  ≺dep that  means  an  explicit  or 
implicit  dependency between elements such as the second 
event can happen only later than the first one.

Event trace is a finitary partially-ordered set (T, ≼), where
 T ⊆ HWEvents ;
 partial order ≼ is a transitive and reflexive closure of  ≺dep, 

i. e.  ≼ = ({(e,e)|e ∈ T}≺dep|T)*, that defines the order of 
events in time and their dependencies between them;

 ≺dep|T = ≺dep  ∩ T×T is a projection of ≺dep on T;
 finitary means ∀ e ∈ T the set {e' ∈ T| e'≼e} is finite.

Event  trace  represents  a  hardware  execution,  where  T 
contains  all  events  happened.  Finitarity  expresses  the 
assumption  that  only  finite  number  of  events  can  happen 
during finite time. In different event traces the same events 
can be ordered or unordered, so there is no partial order on 
HWEvents. Instead there is a dependency relation ≺dep that 
can be non-transitive and even its transitive closure can be 
cyclic.

We will use the following denotations:
 (X) — set of all subsets of X;
 po(X) — set of all partially-ordered subsets of X;
 fpo(X) — set of all partially-ordered finitary subsets of X;
 Traces(HWEvents, ≺dep) ⊆ fpo(HWEvents) — set of all 

traces of HWEvents with a dependency relation ≺dep;
 directed(X, ≼) =  {X' ⊆ X|  ∀ T1,T2 ∈ X' ∃ T3 ∈ X': 

T1 ≼ T3 ∧ T2 ≼ T3)}  —  set  of  all  directed  subsets  of 
(X, ≼);

 dcpo(X, ≼) =  {X' ∈ (X)|  ∀ Y ∈ directed(X',≼|X') 
sup(Y) ∈ X'}  —  set  of  all  directed  complete  partially 
ordered subsets of X;

 Prefix(T,  ≼)  =  {(T',≼')  |  T' ⊆ T ∧ ∀ e ∈ T ∀ e' ∈ T' 
(e≼e')  ⇒ e ∈ T' ∧ ≼'  =  ≼|T' }  -  set  of  all  prefixes  of 
partially ordered set (T, ≼);

 ≼pre = {(T1,T2) | T1 ∈ Prefix(T2)} — is_prefix relation;
 cleft(X)  =  {X' ∈ dcpo(X,  ≼pre) |  ∀ (T,  ≼) ∈ X' 

Prefix(T, ≼) ⊆ X'} — set of all dcpo-subsets of (X, ≼pre) 
left-closed w.r.t. partial orders of its elements.



A set  of  all  possible  event  traces  for  (HWEvents,≺dep) is 
HWTraces ∈ cleft(Traces(HWEvents,≺dep)),  where  all 
possible means that all the traces are compliant to hardware 
specification.  Thus,  HWTraces represents  a  model  of  the 
hardware managed by an operating system.

If there is an infinite sequence of event traces in HWTraces 
such  that  each  next  trace  extends  the  previous  one  then 
supremum of the sequence also is in the HWTraces. That is 
why it  is  required  HWTraces to  be  a  dcpo-subset.  If  an 
event trace is possible that any its prefix is possible, so it is 
required HWTraces to be left-closed w.r.t. partial orders of 
its elements.

There  is  a  number  of  formalisms  suitable  for  compact 
description of event trace sets including Petri nets [6], flow 
event  structures  [7],  event  structures  [8],  Pomsets  [9], 
process algebras like CCS, CSP, ACP [10,11,12].

Behavioural  model  of  an  operating  system  that  manages 
hardware can be considered as a subset of all possible event 
traces  of  the  given  hardware  platform 
HWTracesOSImage ∈ cleft(Traces(HWEvents,≺dep)),  where 
HWTracesOSImage ⊆ HWTraces.

Behavioural  property  of  operating  system is  defined  in  a 
straightforward  way  as  a  set  of  sets  of  event  traces 
OSValid ⊆ cleft(HWTraces).  Behavioural  model  of  an 
operating system is considered to have a property  OSValid 
iff  HWTracesOSImage ∈ OSValid.

So  far,  we  defined  the  behavioural  model  of  operating 
systems  in  terms  of  collective  trace  semantics  of  events 
happened  in  hardware  level.  As  far  as  the  given  trace 
semantics preserves concurrency of events,  it  can be used 
with verification techniques based on both true concurrency 
models and interleaved models.

2.2. Abstract Models
Following  the  ideas  of  abstract  interpretation  [13]  let  us 
define a concept of abstraction.

Let us denote a lattice of all subsets of cleft(HWTraces) as 
L ≡ ((cleft(HWTraces)),  ⊆,  ,  ∩).  Then an  abstraction 
( A, γ ) is a pair ( A, γ ), where A – an abstract domain, and 
γ: A → L is an injective function.

Partial  order  ⊆ of  L defines  the  partial  order  ⊑ of  A 
a1 ⊑ a2 ≡ γ(a1) ⊆ γ(a2) since  γ is injective. Function of  best  
over-approximation α: L → A maps  the  precise  property 
r ∈ L to an abstract property α(r) ∈ A:
 r ⊆ γ(α(r))                   over-approximation
 ∀ a ∈ A r⊆γ(a) ⇒ γ(α(r))⊆γ(a)    best over-approximation

It  is known [10] that there exists a function of  best over-
approximation α iff posets  L and  A with functions α and  γ 
compose a Galois connection (α,γ): L ⇋ A.

2.3. Properties Classification
Property  Rm ∈ L  is  called  a  negative  property iff 
∀ P ∈ cleft(HWTraces) P ∉ Rm ⇒ ∀ P' ∈ cleft(HWTraces) 
P ⊆ P'  ⇒ P' ∉ Rm.  Class of negative properties HNeg is the 
most practically useful one among all properties in collective 
trace semantics.

Dual class of  positive properties HPos includes properties 
Rm ∈ L:  ∀ P ∈ Rm ∀ P' ∈ cleft(HWTraces) P ⊆ P'  ⇒ 
P' ∈ Rm.

Let us define an auxiliary function Pchar that maps a set of 
event  traces  P and  a  property  Rm ∈ L to  Pchar(P,  Rm)  = 
{TS ⊆ P| Prefixes(TS) ∉ Rm 
                                       ∧ ∀ TS' ⊂ TS Prefixes(TS') ∈ Rm},
where  Prefixes(TS)  =  {t ∈ HWTraces|   t'∃  ∈ TS: 
t ∈ Prefix(t')}  —  a  union  of  all  prefixes  of  traces  from 
TS ∈ (HWTraces).  Let  us  denote  Pchark(P,  Rm)  = 
{TS ∈ Pchar(P, Rm)| |TS| = k}. Then Rm ∈ HNeg is called a 
negative  property  of  cardinality  k HNk iff 
∀ P ∈ cleft(HWTraces)\Rm  Pchark(P, Rm) ≠ ∅.

Well-known abstraction of collective trace semantics is the 
individual  trace  semantics.  Class  of  properties  precisely 
represented in individual trace semantics  Hjoin is a subclass 
of negative properties, where
Hjoin =  {Rm ∈ (cleft(HWTraces))|  ∃ Pm ⊆ HWTraces: 
∀ P ∈ cleft(HWTraces) P ∈ Rm  P ⊆ Pm}.
Moreover,  Hjoin equals  the  class  of  negative  properties  of 
cardinality 1 HN1.

3. OPERATING SYSTEM VERIFICATION
3.1. Verification in Abstraction
The task of verification is to check if a behavioural model of 
an operating system HWTracesOSImage has a property R, i.e., 
HWTracesOSImage ∈ R.  As  far  as  low  level  model  is  too 
detailed and too complex, abstraction is a typical approach to 
overcome those problems.

For  an  abstraction  (α,γ): L ⇋ A the  approach  looks  as 
follows.  Behavioural model  HWTracesOSImage is represented 
by  AOS ∈ A such  that  α({HWTracesOSImage}) ⊑ AOS. If  the 
property R has a precise representation in A AR ∈ A then the 
verification task can be reduced to checking AOS ⊑ AR.

There  are  two kinds  of  potential  problems of  verification 
methods: unsoundness and imprecision.
 unsoundness  means  situations  when  verification  misses 

actual bugs;
 imprecision  means  situations  when  verification  reports 

false alarms.

The assumptions made guarantee that the approach above is 
sound:  AOS ⊑ AR ⇒ α({HWTracesOSImage}) ⊑ AOS ⊑ AR ⇒ 
γ(α({HWTracesOSImage})) ⊆ γ(AOS) ⊆ γ(AR) ⇒       
{HWTracesOSImage} ⊆ γ(α({HWTracesOSImage})) ⊆ γ(AR)  ⇒ 
HWTracesOSImage ∈ γ(AR).

Lack of  precision happens if  AOS ≠ α({HWTracesOSImage}) 
(Picture  1).  Gap  between α({HWTracesOSImage}) and  AOS 

may lead to false alarms.

Picture 1. Verification of precisely representable property



If the property R does not have a precise representation in A 
(γ(α(R))  ≠ R)  then  the  picture  becomes  more  complex 
(Picture 2).

Picture 2. Verification of precisely non-representable  
property

To keep soundness it is required to choose AR ∈ A such that 
AR ⊑ α(OSReq)  and  to  check  if  AOS ⊑ AR.  Here  α is  a 
function of best under-approximation dual to α. The problem 
of  imprecision  in  this  case  can  be  very  significant  up  to 
missing any sense. For example, properties not belonging to 
HNeg are  mapped  by  α for  individual  trace  semantics 
abstraction to ∅ and check if AOS ⊑ ∅ is pointless. Thus, it is 
highly  desirable  to  choose  abstraction  that  allows  to 
represent target property precisely.

3.2. Abstraction and Property Classes
An important requirement for soundness of verification is to 
choose the approximation AOS: α({HWTracesOSImage}) ⊑ AOS 

or  γ(α({HWTracesOSImage})) ⊆ γ(AOS).  This  means  AOS has 
to  represent  the  exact  set  of  event  traces  that  operating 
system can produce optionally with other set of traces. This 
requirement can be relaxed for some kinds of properties.

First  of  all,  let  us  consider  a  class  of  properties 
HClass ⊆ (cleft(HWTraces)).  It  induces  abstraction 
( A, γHClass )  =  ( HClass, id ),  where  the  abstract  domain 
equals HClass and γHClass is an identity function. In this case 
⊑ on A equals subset relation ⊆:
  a1 ⊑ a2 ≡ γ(a1) ⊆ γ(a2) = a1 ⊆ a2.

If  HClass is  a  complete  lattice  and 
Rtrue = cleft(HWTraces) ∈ HClass,  then  there  exists  a 
function  of  the  best  over-approximation 
αHClass: (cleft(HWTraces)) → HClass that  maps  each 
property to a property from HClass representing the original 
one best of all. By the way, αHClass defines a preorder relation 
⊑HClass:  R1 ⊑HClass R2 ≡ αHClass(R1) ⊆ αHClass(R2) that  can  be 
propagated  to  any  other  abstraction ( A, γ ): 
a1 ⊑HClass a2 ≡ γ(a1) ⊑HClass γ(a2).

Theorem. If abstraction ( HClass, id ) has a function of the 
best over-approximation  αHClass, and the property  R belongs 
to  HClass (R ∈ HClass)  then from existence of  AOS such 
that  α({HWTracesOSImage}) ⊑HClass AOS and  AOS ⊑ α(R) 
follows  correctness  of  the  operating  system  regarding 
property R (HWTracesOSImage ∈ R).
Proof.
(1) AOS ⊑ α(R) ⇒ γ(AOS) ⊆ γ(α(R)) ⊆ R ⇒ γ(AOS) ⊆ OSR.
(2) α({HWTracesOSImage}) ⊑HClass AOS

⇒ {HWTracesOSImage} ⊑HClass γ(AOS)
⇒ αHClass({HWTracesOSImage}) ⊆ αHClass(γ(AOS))
⇒ [αHClass — over-approximation]
{HWTracesOSImage} ⊆ αHClass({HWTracesOSImage}) ⊆ 
⊆ αHClass(γ(AOS)) 
⇒ [(1) and αHClass — over-approximation for γHClass = id]
{HWTracesOSImage} ⊆ αHClass(γ(AOS)) ⊆ R
 ⇒ HWTracesOSImage ∈ R. □

For  example,  for  HClass =  HNeg the  abstraction 
( HNeg, id ) has  a function  of the best over-approximation 
αHNeg:
αHNeg(R) = {P ∈ cleft(HWTraces)|∃ P' ∈ R: P ⊆ P'} = ↓R

Correspondingly, preorder ⊑HNeg is as follows:
R1 ⊑HNeg R2 ≡ ↓R1 ⊆ ↓R2 = ∀ P ∈ R1 ∃ P' ∈ R2: P ⊆ P'

For singletons it means {P1} ⊑HNeg {P2} ≡ P1 ⊆ P2.

It  justifies  the  conclusion  obvious  from  intuition  that  if 
γ(AOS) is a superset of a set of all event traces produced by 
target operating system then the approximation AOS could be 
soundly  used  for  checking  properties  of  negative  class 
HNeg.

3.3. Operating Systems Verification
Let  us  consider  a  task  of  operating  system  verification 
against a set of requirements  OSValid ⊆ cleft(HWTraces). 
It  is  suggested  to  decompose  the  requirements  as  a  finite 
hierarchy of properties, where leaf properties are convenient 
for some verification method.

A parent-child relation in the hierarchy means that the child 
property  is  a  subproperty  of  the  parent  property 
(Rparent ⊆ Rchild), and  the  intersection  of  all  the  children 
should  cover  the  parent  property  (Rparent = ∩Rchild).  As  a 
result checking of all leaf properties will lead to the checking 
of the root property.

Picture  3  demonstrates  the  interaction  between  the  main 
entities  participating  in  verification  of  a  leaf  property. 
Operating system and hardware exist in a physical world and 
they  can  be  "felt"  in  some  sense.  The  property  of  the 
operating  system and  highly  coupled  concept  of  "satisfy" 
relation  ⊨ cannot  be  easily  "felt",  while  many  properties 
have quite transparent representation in the physical world.

Picture 3. Overview of operating system verification

Low-level models  HWTracesOSImage,  R and ∈ represent in 
mathematical world a composition of operating system and 
hardware,  requirements  to  operating  system  and  "satisfy" 
relation,  correspondingly.  But  these  mathematical  objects 
exist  hypothetically,  since  it  is  too  complex  to  construct 
them.  Actual  analysis  is  applied  to  abstract  behavioural 
model  AOS,  abstract  property  AR and  relation  "satisfy" 
between  them.  These  mathematical  objects  ignores  many 
details of low-level models.

While AOS and AR can be elements of different abstractions, 
we consider the case when  AOS and AR are elements of the 
same abstract domain A with partial order ⊑ playing the role 
of the "satisfy" relation ⊨. There is a hypothetical mapping 
between the  abstract  domain  A and  the  low-level  models 
γ : A → L and,  possibly,  a  function  of  the  best  over-
approximation α: L → A. Ideally, the abstract domain should 



be chosen so that it is able to precisely represent the target 
property  R as  AR ∈ A and there  is  a  function of  the best 
over-approximation α.

The target property is formalized as  AR. There is a need to 
check if AR correctly represents R, but in general case it can 
only be done mentally.

The next step is to choose an element AOS ∈ A that soundly 
represents  the  target  operating  system.  To  simplify  the 
analysis  of  this  fact,  the  choice  can  be  done  taking  into 
account specifics of the target property. It may allow to relax 
the  requirements  to  the  relation  between  the  low-level 
behavioural model and the abstract one:
  α({HWTracesOSImage}) ⊑HClass AOS if R ∈ HClass.

Finally,  the  original  verification  task  of  checking 
HWTracesOSImage ∈ R is reduced to the check AOS ⊑ AR that 
can be formally done using some verification method.

Any of the steps above can produce additional assumptions 
or  limitations  of  verification  methods  that  should  be 
analyzed and verified separately. It can be considered  that 
these extra  properties  are  added to the target  hierarchy of 
requirements  and  are  verified  using  other  verification 
methods according to the same scheme.

Using  a  property  from  the  hierarchy  for  proving  another 
property  should  be  done  to  avoid  cyclic  dependencies 
between  them.  Such  cyclic  dependencies  can  happen 
sometimes, for example, if the dependencies are only used 
for induction step, but validness of the dependencies should 
be carefully managed.

The  proposed  approach  for  operating  system  verification 
using different verification techniques includes the following 
steps:
1.  Requirements  to  be verified are  represented  as  a  finite 
hierarchy of properties of the system under verification.
2. For each (leaf) property R of the hierarchy
2.1. abstraction  ( A, γ ) chosen so that the target property R 
has a precise representation in the abstraction AR ∈ A;
2.2.  analysis  done  to  demonstrate  that  AR correctly 
represents the target property R;
2.3. abstract behavioural model of operating system chosen 
AOS ∈ A;
2.4. analysis done to demonstrate that the chosen model AOS 

adequately represents the actual behaviour of combination of 
operating  system and  hardware  with  respect  to  the  target 
property R (e.g., α({HWTracesOSImage}) ⊑HClass AOS);
2.5. formal proof of the relation AOS ⊑ AR done using one or 
another verification method;
2.6.  any  steps of  2.1-2.5 can produce  a  conditional  result 
under some assumptions or limitations that should be added 
to the hierarchy (step 1) for separate analysis.

4. CONCLUSION
Contributions of the paper include a systematic approach to 
formalization  and  reasoning  about  verification  of 
behavioural  properties  of  operating systems and a  generic 
definition of conditions sufficient for sound simplification of 
behavioural  models  for  verification  of  properties  of  a 
particular class.

The  proposed  approach  provides  a  ground  to  explicitly 
define assumptions made and to formally reason about them. 
It is not so specific for operating systems and can be useful 
to any complex system under verification. But the operating 
systems are  the most demanding application domain since 

accurate  and  comprehensive  verification  of  operating 
systems  requires  a  systematic  combination  of  various 
verification techniques for checking different properties.

Applicability  of  the  approach  is  limited  by  behavioural 
properties  that  can  be  expressed  in  collective  event  trace 
semantics.  For example,  probabilistic requirements are  not 
covered  by  the  given  model.  But  the  approach  can  be 
extended in future to cover them as well.

Another future direction is the development of a case study 
demonstrating  how  the  approach  can  be  applied  to 
verification of a particular operating system, for example, for 
combining deductive verification of generic kernel code and 
proof  of  validity  of  assumptions  made  in  memory  model 
implemented in verification tools [14].
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