ABSTRACT
This paper provides a method of mathematical representation of the traffic flow of network states. The flow of states is represented as transitions to the Markov Chains. Anomalies are interpreted as graph transitions with low probabilities.

Keywords
Kernel Methods, Data Analysis, Markov Chain.

1. INTRODUCTION
Network attacks becoming a major threat on nations, governmental institutions, critical infrastructures and business organisations. Some attacks are focused on exploiting software vulnerabilities to implement denial of service attacks, damage or steal important data, other use a large number of infected machines to implement denial-of-service attacks. In this paper we are focusing on detecting network attacks by detecting the anomalies in network traffic flow data and anomalous behaviour of the network applications. The goal is to detect the beginning of the attack in a real-time and to detect when the system is returned back to the normal state. In this paper we are not focusing on the problem of identifying the source of the attack and the attack mitigation.

The network traffic flow data can be represented by a set of network-level metrics (amount of packets for different protocols, inbound and outbound traffic, etc.) and application-level metrics (like the response duration histogram for web server). These metrics are collected by the traffic analyser at fixed rate. The goal for the state analyser is to detect anomalous network and/or application behaviour basing on these metrics.

The input data for the analyser is statistics matrix that contains a single row for every traffic time slice. Each row contains the network-level and application-level features that come from different scales. This matrix is the input for the intrusion detection processes (both training and detection steps).

Our method has two sequential steps. Study and analysis of the behaviour of networking datasets and projection of data onto a lower dimensional space - training step. This is done once and updated as the behaviour of the training set changes. During this step we can handle corrupted training sets.

The output from the training step enables online detection of anomalies to which we apply automatic tools that enable real-time detection of problems. Each newly arrived datapoint is classified as normal or abnormal. Analysis of the indicators of network traffic reveals represent normal behaviour as statistically dependent set, grouped in clusters after reduced dimensionality operation, against which the representation of anomalies. Anomalies is not statistical connected with the basic set of states. They appear as distant from the main cluster points.

The traffic analyser processes the network packets and summarises the network-level statistics. These metrics include: tcp flags usage; number of control tcp packets (packets without payload); number of data tcp packets (packets with payload); number of source (client) packets; number of source control packets; number of source data packets; number of source data bytes; number of destination (server) packets; number of destination control packets; number of destination data packets; number of destination data bytes.

TCP-connections could be reassembled to estimate application-level metrics. Another sources of application-level metrics are the log files from applications (like access-logs on HTTP web server). The analyser processes the application logs to collect and summarise application level metrics (like total amount or requests, total amount of errors, histogram of the response times, histogram of error codes, etc). These metrics can be extended by adding other sources of behaviour metrics, like e-mail server logs, database server logs, cpu/memory metrics. We measure, receive and sense many parameters (features) at every pre-determined time interval – forming high dimensional data. The challenge are: How to cluster and segment high-dimensional data? How to find distances in high-dimensional data? How to find deviations from normal behaviour?

Challenge: How to process an “ocean” of data in order to find abnormal patterns in the data? How to fuse data from different sources (sensors) to find correlations and anomalies? How to find distances in high-dimensional data? They do not exist. How can we determine whether a point belongs to a cluster/segment or not? The goal is to identify points that deviate from normal behaviour which reside in the cluster/segment. How we treat huge high dimensional data that is dynamically and constantly changes? How can we model the high dimensional data to find deviations from normal behaviour?

2. MODEL OF STATES FLOW
The traffic state at each time point can be represented by a vector, as shown in Figure1
Thus, the traffic can be modeled as a random process related to the vector $X(t)$, where t is time. Define $X = \{X_i\}$, the dataset of all traffic states $X(t)$, where for each t $X(t)$ belongs to n-dimensional space \mathbb{R}^n.

At the training stage of the algorithm, we collect statistics on the behavior of traffic. We group this behavior into clusters [1]. Each cluster has its main trend (the center of the cluster) and a corridor that characterizes the deviation in it. We define the vertices of the Markov chain associated with states through lace.

The standard behavior of traffic we want to represent as a set of vertices of the Markov chain.

Let $F = \{f_k\}$ be the set of traffic behavior patterns defined through the cluster centers. $W = \{w_k\}$ are corridors of variation for each pattern.

Let’s define the lace.

Definition 1. The W-quantization measure for F is called

$$
\eta_w(F) = \sum_{k \neq p} \# \{i | 0 < |f_k(i) - f_p(i)| < w_k(i)\}
$$

Where $\# \{\cdot\}$ Stands for the power (number of elements) of the set

Definition 2. We define the lace as the set $H = \{h_j\}$, realizing the minimum of the following functional:

$$
H = N_w(F) = \sum_k h_k - f_k^2 + \eta_w(H) \rightarrow \min
$$

The traffic state and “the lace” is illustrated in Figure 2.

2.1 Construction of “the Lace”

We associate with the family of vectors $F = \{f_i\}$ the graphical form G.

We define G as a matrix of size $m \times n$, where m is the maximum value of F, n is the number of coordinates of each of f_i. Elements of the matrix G are located in the interval [0,1]. For an element of the matrix G with index (p,k) we define the intensity by the following formula:

$$
g(p,k) = \max_r e^{-\frac{|p-f_r(k)|^2}{w_r^2(k)}}
$$

We obtain a map of the smoothed graph of cluster centers, where the thickness of the line is determined by the weight (corridor) of the component.
Finally, we obtain $g_k = \lim_{t \to \infty} g_k(t)$ a local maximum for

$$N_w(F) = \sum_k \|g_k - f_k\|^2 + \eta_w(G)$$

Figure 5: Left - the centers of clusters. Right - lace. The x-axis is the time.

2.2 Construction of Markov Chain

We select the key points in time according to the formula
\[\text{Key time} = 1: k: t(\text{end}) \], where k be the time interval.
Each point $h(t)$ of the lace at a key point Key time is corresponds with the vertex of the Markov chain. Each vertex of the chain corresponds to a stable state of the traffic system.

Figure 6: Red correspond lace $H = \{h_i\}$. Black are the vertex of Markov chain $E = \{h_i(t_j)\}$. If two black points are connected by an edge, then the probability of a transition in 1 step is 1, otherwise 0.

Let $E = x_1, x_2, \ldots, x_N = \{h_i(t_j)\}$ be the key points in lace corresponds to a stable state of the traffic system.

Define the arrows G as all possible pairs of neighboring points in laces $G = \{h_k(t_i), h_k(t_{i+1})\}_{k,i}^{N}$.

So, $[x_i, x_j]$ belongs to G if $x_i = h_k(t_i)$, $x_j = h_k(t_{i+1})$.

Definition 3. We denote the lace graph as $V = (E, G)$ and define the Markov matrix as $P = (p_{ij})$.

\[p_{ij} = \begin{cases} 0, & (i,j) \notin G \\ 1, & (i,j) \in G \end{cases} \]

P — Matrix transition from state to state in 1 step.

We define the transition matrix for an arbitrary number of steps

$$\hat{P} = \lim_{t \to \infty} \sum_{k=1}^t P^k \quad (2)$$

Figure 7: the representation of \hat{P}.

3. MODEL OF ANOMALIES

Given the new traffic behavior in a single day, represented by temporally series $y(t)$, lace graph $V = (E, G)$ and the Markov matrix P, defined in previous training stage of the algorithm.

Figure 8: The representation of Markov Chain $V = (E, G)$

The goal is the mapping curve $y(t)$ into lace.

3.1 Splitting traffic curve.

Splitting traffic is defined as a uniformly distributed set of states between the upper and lower boundary of the corridor, as shown in Figure 9.

Figure 9: Yellow: the lace; green: current traffic; black: the traffic splitting.

Each layer of split traffic is compared with the lace. Looking for the lace phrase, most similar to the behavior of traffic.
Let $X = \{x_k\}$ be the splitting traffic curve and $H = \{h_j\}$ be the lace. For each traffic layer i, we look for its projection on the lace based on the minimization of the functional:

$$L_k(y) = \|y - x_k\|^2 + \|\min_{h_j}(y - h_j)\|^2 \quad \min$$

Where $y_k = \arg\min (L_k)$

We seek a solution using map of the smoothness (form G) via iteration series:

$$X_{k+1} = X_k + (dG/dy)(X_k)$$

As a result, we get the traffic splitting projection onto the lace $Y = \{y_k\}$ as shown in Figure 10.

![Figure 10: Yellow: the lace; black: splitting of current traffic metric after mapping; blue: the lace phrase, most similar to the behavior of traffic](image)

In notation of 2.2 let $\{t_k\}$ be the key points of the time.

Then for any moment t_k, we have distribution of states $\{Y_i(t_k)\}_i$. Define $p_i(k) = \# \{p_i \mid Y_i(t_k) = h_j(t_k)\}/N$ where N be the length of traffic splitting. Then $W(k) = \{p_i\}_i$ be probability distribution at the time moment k for current traffic to be in the lace states. So, we have the representation of current traffic behavior via flow of probability distribution $W(k)$ to be in the Markov Chain $V = (E, G)$ states.

![Figure 11: Left side; projection of traffic splitting into lace. Right side: black is the representation of Markov Chain. Yellow is flow of probability distribution W(k)](image)

3.2 The probabilistic model of the anomalies.

At each key point in time, we have a random process $W = \{W_t\}$, where at each moment of time

$$W_t = \{p_1, p_2, \ldots, p_N\}$$

is the probability distribution be in one or another state of the lace. N is the length of the splitting.

Now let M be the Markov matrix (2), and W the current state. Then W' (is the probability distribution of the transition from a given state to another in the future. $W_0 = W^T M$ is the probability distribution of states from which one can come to the state W. Now calculate the transition probability $W(t) \rightarrow W(t + 1)$. If the probability is 0, then we assume that this transition is anomalous. Let $W(t)$ be the current state, r the parameter of the determination of the model ($r = 1$, the Markov model, $r > 1$, the Bayesian model) $W(t-1), \ldots, W(t-r)$ are previous states, $W(t-1), \ldots, W(t-r)$ are the states to go from previous states via Markov chain. The question is: what is the relationship with current state $W(t)$ and the history of previous states $W(t-1), \ldots, W(t-r)$?

The following formula shows the probability distribution of such a state that it would be possible to flow from past states along the Markov chain

$$Wd = \sum_{i=1}^{d} W(t-k)$$

The following formula characterizes the measure of the anomaly of the current state.

$$X(t, d) = P(t-1, \ldots, t-d) = \sum W(t) Wd$$

This probability measure (between 0 and 1) shows the possibility of being in the current state $W(t)$ via history of past states $W(t-1), \ldots, W(t-r)$. In the case when the nonzero probability support of Wd overlaps the support of the nonzero probability $W(t)$, then the probability of the transition between $W(t-1), \ldots, W(t-r)$ and current state $W(t)$ will be 1. Conversely, if the supports are not intersect, then the probability of transaction is 0. In this case we have an anomaly in $W(t) \rightarrow W(t+1)$.

Thus, we have obtained a function $X(t, d)$, that characterizes the measure of anomaly of the current state. The parameter d is associated with long history considered.

In conclusion, we give some examples of the behavior of the anomaly measure on real data.

![Figure 12: Yellow: the lace; Green: traffic metrica; Cyan: splitting of current traffic metric after mapping; blue: the lace phrase, most similar to the behavior of traffic; Red: the anomaly measure X(t, d)](image)
4. TEST
During research 4 domains from database were tested. Anomalies were successfully detected by 97%. Example

Comparison of the obtained present method with the projection on the PCA [1] we afford in the form of confusion matrix

<table>
<thead>
<tr>
<th>Column1</th>
<th>anomalies</th>
<th>background</th>
</tr>
</thead>
<tbody>
<tr>
<td>anomalies</td>
<td>0.97</td>
<td>0.03</td>
</tr>
<tr>
<td>background</td>
<td>0.02</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Table 1: distribution of the “false-positive” and “true-negative” for the result of presented algorithm.

<table>
<thead>
<tr>
<th>Column1</th>
<th>anomalies</th>
<th>background</th>
</tr>
</thead>
<tbody>
<tr>
<td>anomalies</td>
<td>0.63</td>
<td>0.37</td>
</tr>
<tr>
<td>background</td>
<td>0.29</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Table 2: distribution of the “false-positive” and “true-negative” for the result of projection on PCA.

REFERENCES

[3] Unmixing and Target Recognition in Airborne Hyperspectral Images Amir Averbuch, Michael Zheludev & Valery Zheludev Earth Science Research; Vol. 1, No. 2; 2012 ISSN 1927-0542 E-ISSN 1927-0550 Published by Canadian Center of Science and Education