
Solving Scheduling Problems with Randomized and
Parallelized Brute-Force Approach

Reggie Davidrajuh
University of Stavanger

Stavanger, Norway
e-mail: reggie.davidrajuh@uis.no

Chunming Rong
University of Stavanger

Stavanger, Norway
e-mail: chunming.rong@uis.no

ABSTRACT
Most of the scheduling problems are NP-hard problems.
Thus, they do not have polynomial-time solutions. The
literature review provides hundreds of methods and
approaches to find polynomial-time near-optimal solutions.
Most of these approaches are based on genetic algorithms.
Genetic algorithms have the power of scanning most of the
solution space, and they are not vulnerable to hill-climbing
phenomena. However, as this paper shows, genetic
algorithms cannot be used if the rate of production of healthy
offspring is very low. Hence, this paper proposes a novel
approach that is based on randomized brute-force and
inspired by genetic algorithms. Also, the proposed approach
uses parallel processing.

Keywords
Scheduling problems, genetic algorithms, the brute-force
approach, parallel processes.

1. INTRODUCTION
This paper presents an approach to combine the powers of
the brute-force approach, parallel processing, and genetic
algorithms to solve scheduling problems in polynomial time.

Formally, the scheduling problems involve scheduling of
jobs (series of tasks), while satisfying the constraints on the
usage of resources and temporal precedence. As in this
paper, a well-known class of scheduling problems is the job-
shop scheduling in which resource constraints are the
availability of processors (machines) for processing the tasks
[1].

Scheduling problems are non-polynomial (NP) hard
problems; thus, they do not have polynomial time solutions.

The literature review provides hundreds of methods and
approaches based on genetic algorithms to find polynomial-
time near-optimal solutions. Genetic algorithms are powerful
as the newly made population (by the reproduction
operations crossover and mutation) can be positioned in most

of the solution space, and they are not vulnerable to hill-
climbing phenomena. However, genetic algorithms cannot
guarantee optimal solutions, as there is no assurance that any
of the offspring eventually hit the optimal point. Also,
genetic algorithms face another obstacle when applied to
scheduling problems. In scheduling problems, the order of
tasks has to be maintained all the time. When the
reproduction operations (crossover and mutation) creates a
new population in genetic algorithms, most of the population
may become invalid as they do not satisfy the order of tasks.
In this case, newer populations have to be created repeatedly
just to make sure that a valid set of offspring is born. The
computation time that is spent on repeated reproduction is
usually ignored in the literature. This concealed time (the
time that is spent on producing invalid specimens) can alone
make the solution non-polynomial.

The brute-force is a simple approach that will result in
optimal solution as every possible combination is checked.
However, since every possibility is considered, the approach
results in non-polynomial timings. This paper proposes an
approach that combines the power of genetic algorithms with
the simplicity of the brute-force approach. Also, parallel
processing is applied to minimize the running time.

In this paper: Section-2 presents a concise introduction to
genetic algorithms. Section-3 briefly introduces the brute-
force approach. Section-4 proposes a new approach that
combines the powers of genetic algorithm, parallel
processing, and the brute-force approach.

2. GENETIC ALGORITHMS
A brief introduction to the genetic algorithm (GA) is given in
this section. This brief introduction is only to make this
paper self-contained. For a complete study of GA, the
interested reader is referred to the following textbooks [2, 3].

GA is for solving optimization problems. GA follows the
natural process of biological evolution. GA involves the
following steps, as shown in Figure-1:

CSIT Conference 2019, Yerevan, Armenia, September 23-27

13

0. Initialization: This is the first step. A group of initial
population is used to start the GA iterations. The
iterative run of the algorithm involves steps 1-4.

1. Evaluation: Each individual is measured for its fitness.
2. Selection: A group of individuals are selected for

reproduction; this is done randomly with a probability
depending on the relative fitness of the individuals so
that the best ones are often chosen for reproduction.
Also, a fair chance is given to others that may include
less-fit individuals too.

3. Reproduction: Reproduction of a new population from
the selected individuals: new chromosomes are made by
the reproduction operations such as crossover and
mutation.

4. The newly created population replaces part of the older
population.

5. Termination: The algorithm is stopped when the
population converges towards the optimal solution.

3. BRUTE-FORCE APPROACH
The brute-force approach is an exhaustive search approach.
In the brute-force approach, all the possible combinations are
enumerated, and each of these combinations is checked one-
by-one. Since all the possibilities are checked, the approach
finds the optimal solution. Due to the exhaustive nature, the
approach also results in non-polynomial timing for NP-hard
problems. However, if the problem size is small, it is usual to
apply the brute-force approach even for NP-hard problems,
due to its simplicity. For a more detailed study on the brute-
force approach, the interested reader is referred to [4, 5].

The brute-force approach is simple as it usually consists of
an iteration involving the following steps:
0. Initialization: Let the number of iteration i = 0.
1. Increase i by one. Find a new combination c of the input

parameters.
2. Use c to find the solution s. If s is a better solution than

the previous solutions, then save (c, s).
3. If s is equal or better than the expected solution sOPT,

then stop. If i = imax where imax is the maximum
allowable iterations, then stop. Else, go to step-1 to
generate the next unique combination c.

4. THE NEW APPROACH
The new approach is introduced through an example.

4.1 Example
A grid computing facility (‘grid’ for short) consists of three
processors (P1, P2, and P3) that are capable of performing
any jobs. The grid is to perform four jobs, and each consists
of three sequential tasks (‘t’ for short). Temporal
dependencies between the twelve tasks are shown below.
Job-A: tA1 -> tA2 -> tA3
Job-B: tB1 -> tB2 -> tB3
Job-C: tC1 -> tC2 -> tC3
Job-D: tD1 -> tD2 -> tD3

This means, tXj cannot be started before the completion of
tXi, where X belongs to {A, B, C, D}, and 1 <= i < j <= 3.
However, since there is no dependency between tXi and tYj
for different X and Y, these tasks can be performed
independent of each other.

A scheduling problem is to find the optimal allocation of the
processors so that all the four jobs are completed with the
least possible time (minimal completion time).

Since there are twelve different tasks (tA1 to tD3), the total
number of combination is about 479 million (exactly,
factorial(12) = 479,001,600). However, out of these 479
million sequences, only 396 k (exactly, 369600, resulting
from 12C3 * 9C3 * 6C3) are valid ones. The valid
combinations are the ones that obey the dependency
constraints, e.g., the start timings of tA1 < tA2 < tA3, etc.

The total number of combination: cT = 479,001,600
The number of valid combination: cV = 369,600

The reproduction success ratio: repSR = cV /cT = 0.08%

Since the ratio (repSR) is extremely small (0.08%), we cannot
use the genetic algorithm. This is because all of the new
specimens that are made by reproduction will most probably
(99.92%) be invalid ones. In other words, on average, for
every 1296 specimens reproduced, only one will survive.
This means a tremendous amount of time will be wasted on
reproduction than on solving the problem.

Figure-2: Towards the new approach: three-step process

4.2 Towards the New Approach
The new approach starts as the brute-force approach, see
Figure-2. This approach consists of three steps:
• Step-1 “The complete pool”: All the possible

combinations are found. Though finding the unique
combinations itself amounts to non-polynomial timing,
an efficient “dynamic programming” based solution can
be used [6].

• Step-2 “The valid pool”: Each member of the pool is
tested for validity. The valid ones are added to the valid
pool.

• Step-3 “The Performance Engine”: The valid pool is
much smaller in size than the complete pool. Hence, the

14

valid pool can be used as the newly reproduced
specimens. For example, iteratively, a random specimen
can be taken from the valid pool and fed into the
performance engine for fitness evaluation. As usual in
the genetic algorithms, the iterations can be stopped
once the maximum number of iterations are run, or a
specimen with equal to or more than the expected value
is found.

4.3 The Simulation
For simulations, the following timing is assumed (all in units
of time TU):
Job-A: tA1 = 3 tA2 = 5 tA3 = 6
Job-B: tB1 = 8 tB2 = 4 tB3 = 9
Job-C: tC1 = 2 tC2 = 7 tC3 = 5
Job-D: tD1 = 3 tD2 = 2 tD3 = 6

The performance engine for fitness evaluation is an Activity-
Oriented Petri Net (AOPN). The AOPN (shown in Figure-3)
is designed following the guidelines given in [7]. The AOPN
is realized with GPenSIM software [8].

Figure-3: Activity-Oriented Petri Net (AOPN) as the
performance engine for measuring the fitness.

The simulation reveals that the least completion time is 21
TU. The completion time of 21 TU is also theoretically the
optimal value. The simulation captures all the best
performing (in the completion time of 21 TU) combinations.
Also, if necessary, the worst performing ones can be
captured too. The complete code cannot be shown in this
paper due to space limitation. However, the complete code is
given in [9]. The interested reader is welcome to download
the code and reproduce the results.

Finally, in the Petri Net, it is assumed at all the three
processors can perform any of the tasks tA1 to tD3.
However, this may not be practical as some of the processors
are dedicated, and can perform only specific tasks (e.g., P1
can only perform tA1, tB3, and tD2). This kind of situation
(dedicated processors) can be very easily accommodated in
the Petri Net, by making some finite changes in the
simulation code.

4.4 The New Approach
In the approach shown in Figure-2, the three stages are
sequentially executed. This means Stage-2 for creating the

valid pool can happen only after the generation of all the
possible combinations are completed in Stage-1. As the
generation of all the possible combinations will take a long
time, the sequential execution of the three stages will
certainly result in long delay. Thus, the new approach
proposes a parallel version of the sequential approach shown
in Figure-2. In the parallel version, shown in Figure-4, all the
three stages are run as parallel processes.

In the approach shown in Figure-4, the generator, the
validator, and the performance engine are run in parallel, as
parallel processes. The generator is responsible for
generation of all the unique combinations. The validator
receives one combination at a time from the generator and
validates it. The valid combinations are saved in the
validator. The performance engine receives one valid
combination at a time from the validator. The performance
engine finds the completion time of the combination, and
saves the result, if it is better than the previous results.

It must be re-iterated that the generator and the validator
blocks are run separately and in parallel (not combined) is to
minimize the time spent on generating the valid pool.

5. DISCUSSION
The generator dominates the running time of the new
approach shown in Figure-4 is as it is the generator that is
going to take a long time to run. The generator plays the
“master” role here, as the other two are slaves seeking the
combinations coming out of the generator.

If a polynomial-time execution is needed, then the generator
(and the other two slaves) can be stopped if any of the
following three conditions are met:
1. The performance engine has already found a

satisfactory result.
2. The maximum allowable combinations are checked.
3. The maximum permissible execution time has passed.

If none of the conditions is met or simply ignored, then the
iterations run forever until all the valid combinations that are
produced by the generator are processed. In this case, the
randomized brute-force approach becomes a pure brute-force
approach.

In Figure-4 (as well as in Figure-2), it is clear that the
reproduction stage is wholly omitted as it serves no purpose
by producing invalid offspring. However, the randomness
involved in the selection stage of genetic algorithms is
missing in the new approach. The randomness in the new
approach is completely dependent on the random generation
of unique combination by the generator. Only the generator
can exercise randomness in generating the combinations. As
the other two slave processes work on the combinations they
get from the generator, there is no randomness involved in
these two processes. Thus, the power behind the success of
the genetic algorithms - the randomness in selection and
reproduction - is lost to a high degree in the proposed new
approach.

Further Work: the simulations that are run for this paper are
limited to the sequential approach shown in Figure-2.
However, the more efficient approach shown in Figure-4
(that uses the three processes that are run in parallel) was not
tested. Thus, making a prototypical system based on Figure-
4 is proposed as further work.

15

6. ACKNOWLEDGEMENT
The authors would like to thank professor Abdulrahman M.
Al-Ahmari of College of Engineering, King Saud University,
for giving a problem on scheduling. The authors made this
paper while solving the problem, which closely resembles
the one given in this paper.

REFERENCES
[1] F. Hutter, H. H. Hoos, & T. Stützle, T. Efficient

stochastic local search for MPE solving. In IJCAI. pp.
169-174. 2005.

[2] Z. Michalewicz, Genetic algorithms+ data structures=
evolution programs. Springer Science & Business
Media, 2013.

[3] K. Deb, “Multi-objective optimization.” Search
methodologies. Springer, Boston, MA, 2014.

[4] Johan Sannemo, Principles of Algorithmic Problem
Solving. Draft version. 2018.

[5] B. N. Miller, and D. L. Ranum, Problem solving with
algorithms and data structures using python Second
Edition. Franklin, Beedle & Associates Inc., 2011.

[6] R. Davidrajuh, “Finding the enumeration of a sequence
by dynamic Programming.” Lecture Notes 07 on
Algorithm Theory, University of Stavanger, Norway.
2016.

[7] R. Davidrajuh, “Outperforming genetic algorithm with
a brute force approach based on activity-oriented petri
nets.” International Joint Conference SOCO’16-
CISIS’16-ICEUTE’16. Springer, Cham, 2016.

[8] GPenSIM Website: http://www.davidrajuh.net/gpensim/
[9] Complete Simulation Code. Available from:

http://www.davidrajuh.net/gpensim/Pub/2019-ICIT/

16

	DT.pdf (p.85-107)
	DT_Title.pdf (p.1)
	New - Copy.pdf (p.2)
	50_190603_181912_DT_FinalSubmissionCSIT2019_FINAL.pdf (p.3-6)
	53_190607_110134_DT_CSIT_2019_Accurate_Pressure_Calculation_Method.pdf (p.7-10)
	81_190731_112131_DT_CSIT2019_p2_final.pdf (p.11-14)
	82_190731_130632_DT_CSIT2019_p1_final.pdf (p.15-18)
	DT_P_Title.pdf (p.19)
	New.pdf (p.20)
	03_190326_015335_DT_petrosyan1_FINAL.pdf (p.21-23)

	ITCT.pdf (p.142-150)
	ITCT_Title.pdf (p.1)
	New.pdf (p.2)
	73_190710_184356_ITCT_CSIT_Haroutunian_FINAL.pdf (p.3-6)
	69_190628_160849_ITCT_wiretap_csit_FINAL.pdf (p.7-9)

