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ABSTRACT

Let us adduce some definitions.

If A is a nonrecursive computably enumerable (c.e.) set, then
a splitting of A 1is a pair A, A, of disjoint c.e. sets such that
A 1 U A2 =A.

A ce. set A is T-mitotic (wtt-mitotic) if there is a splitting
Ala A2 of A such that Al =r AZETA (Al S AZEwtt A )

In this article it is proved, that there exists a low c.e. degree
u such that if v is a c.e. degree and u < v, then v contains a
hypersimple T-mitotic set, which is not wez-mitotic.

Keywords
Mitotic set, low degree, T-reducibility, wrs-reducibility,
hypersimple set.

1. INTRODUCTION

We'll use notions and terminology introduced in Soare [5].

Notations. We deal with sets and functions over the
nonnegative integers @ = {0,1,2,...}.

Let @, be the ¢" partial recursive function in the standard
listing (see Soare [5], p.15, p.25).

If ACw and e€ @, let @ (x)=D, (A:x)= {e}*(x)
(see Soare [5], pp. 48-50).

Xa denotes the characteristic function of A , which is often

identified with A and written simply as A(x). f | x

denotes the restriction of f to arguments y < x,and A [ x

denotes ¥4 [ X . @, ) ()4 denotes (og’m(x)sl«
& ¢, (0T W, =dome, ={x: ¢ (x)!}.
xeW denotes xe W w

e,at s+1 e,s+1 - e,s "

The definitions of pairing function 7(x,y)= <x, y> and
canonical index y of the given finite set A (i.e., Dy =A)are
given in Soare [5].

Definition 1.2. (i) A sequence {Fn} of finite sets is a

new

strong (weak) array if there is a recursive function f such
that F, =Dy, (F, =W,)).

(ii) An array is disjoint if its members are pairwise disjoint.
(iii) An infinite set B is hyperimmune (hyperhyperimmune),

if there is no disjoint strong (weak) array {Fn}nem such that

FNB#J forall n.
(iv) A ce. set A is hypersimple, abbreviated h-simple,

(hyperhypersimple, abbreviated hh-simple) if A s
hyperimmune (hiperhyperimmune) (see Soare [5], p. 80).
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Definition 1.3. If A={a, <a, <a, <---} is an infinite

set, the principal function of A is pr(A), where

pr(A)(n)=a,.

Definition 1.4. (i) A degree a <0 is low if a’=0" , and
high if @’ = 0" (the highest possible value).

(i) Aset A<, @ is low (high), if deg(A)is low (high)
(see Soare [5], p.71).

The definitions of a dense simple set, a strongly hypersimple
(sh-simple set), a finitely strongly hypersimple (fsh-simple)
set notions are given in Soare [5].

Definition 1.5. A c.e. degree a is contiguous if for every

pair A,B of ce.setsina, A= B.

wit
Note that each contiguous degree, by definition, doesn’t
contain 7-mitotic sets, which are not wtt-mitotic.
Ladner and Sasso [3] have proved, that for every nonzero
c.e. degree b there is a nonzero c.e. degree a <b such that
a is contiguous.
E. J. Griffiths has proved (see [2]) the following Theorem:
There exists a low c.e. degree u such that if v is a c.e.
degree and u <v, then v is not completely mitotic.
In the theorem below it is proved that there exists an infinite
class of degrees, containing hypersimple 7-mitotic sets,
which are not we#-mitotic.
Theorem. There exists a low c.e. degree u such that if v is a
c.e. degree and u < v, then v contains a hypersimple
T -mitotic set, which is not wtt-mitotic.
Notice, that it is impossible to replace the term "A-simple"” in

our theorem with any of the following terms: "dense
simple", "fsh-simple", "sh-simple", "hh-simple", "maximal";
since dense simple, fsh-simple, sh-simple, hh-simple,

maximal sets are high (Martin [4], see also Soare [5],
pp- 210-213).

2. PRELIMINARIES FOR THE
THEOREM'S PROOF

Proof. This statement is proved using a finite injury priority
argument. We build a set U in stages s, U = UYEWU 5

The set U will be a member of degree u, mentioned

to witness that

in Theorem. We also construct sets {V,},.,

each c.e. degree in the upper cone of u contains a 1 -mitotic
but non-wtt-mitotic set.

Let 7 be arecursive function from @ onto w*.

Define (¥;,¥;) to be the couple (q)io,(oil) for all i,
where ¥(i) = (i,,7,) -
Construct U, {V,}

requirements:

N,: (3s)(®,Use)s]d) = ®,(U;e)d.

to satisfy, for all e€ @, the

eew



R, @) w,.(») Dor @Y, (V. U{y}:y) =V, ()]
(where ¥, is
corresponding use function).

P<e,,~> AV (D) & (Yuv) (u#v) =
Dy .y ND,,, =D =@E)D,,,, <V.)].

wit-reduction with ¥, denoting the

= v . .
P :W,=A*° for some recursive functional A.

We also ensure that V, =, U @W, (see the Construction
and Lemma 2, Lemma 3).

If U<, W, then the above condition ensures that
V.5, UOW, =, W,.

If N, ismetforall e€ @,then U islow.

If R<e i) is met for all i€ @, then V, isn’t wrt-autoreducible.
(Note, that a c.e. set A is wit-mitotic if and only if A is
wit-autoreducible (see Downey, Stob [2])).

If P<e i) is met for all i € @, then V, is hypersimple.

The proofs of lowness of the set U and the Turing equality
of the sets V, and W, are similar to the analogous proofs in
Theorem 2.2.2 (Griffiths [2] ).

The proof of non-wtr-mitoticity of V, uses the proof of

nonmitoticity of Ve in Theorem 2.2.2 (Griffiths [2] ) with
considerable changes.

Definition 2.1. For any set AC @ and x€ @ define the
x -column of A A ={<y, Z>Z <y,z>€ A& y= x} .

Notations. M =™ . M) =M,,; M!=M

2e+1 >
MO =M M =M} Thus, M'UM'=w.
e=0 e=0

We also will ensure  that V(,0 =, Vg1 (where

vi=vUM" &V'=V,N\M").
At each stage s place markers A(e, x,s) on elements of

\7“ NM f . Values of A will be used both as witnesses to

prevent possible wtt-autoreduction (by the corresponding
functionals) for sets V, and to ensure that W, is

T -reducible to V, .

Define functions A,h (at each stage $) in the following
way:

Definition 2.2. Initially define A(e,0,0) = pr(M?)(1),
hy(e,0) =3z, +2, Ae,1,0) = pr(M))(3(z, +1)+1)
where z, = uy(pr(M?)(3y +2)> pr(M.) (1)) forall
ee .

Let k,z, be such that A(e, x,0) = pr(M)(3k+1),
hy(e,x) = (3z, +2) , where 7, = uy(pr(M?)(3y+2)

> pr(Me1 )(3k +1)) , then define

Ale,x+1,0) = pr(M)(3(z, +1)+1) forall e,xe @.
Also define hy(e,x+1) =3z ,,
Ale,x+2,0) = pr(M))3(z,,, +1)+1)), where

2o = UY(pr(M DBy +2)> pr(M)(3(z,,, +D+1) for
all e, xe w.

+2 (as a consequence

Also define a function «fs (e,i) forall e,i€ @ (at each stage
s). Initially define é:o (e,i)=1i forall e,ic @. We use &

to ensure that only members of sufficiently large magnitude
enter U at stage s, so we can satisfy the lowness

requirements NV, .

Order the requirements in the following priority ranking:

Ny, R,,F,N,R,B,...N ,R,P,...
The (P}
N, requires attention at stage s+1, if it is not satisfied
and ®,(Use)[s] 4.

R, is active at stage s+1, if it is not satisfied and
(Vx<y) W, D) & V. (pr(M)Bk) =

V,, (pr(l‘/[e1 )(3k)) =0, where k is such that

y=Me,& (e.i),s)= pr(M)3k+1).

R, requires attention at stage s+1, if it is not satisfied
and V, (pr(M))G3K) =V, (pr(M)GK)=1 &
¥, Uiyk sl
y=Me,& (e.i),s)= pr(M)3k+1).
P

(e,i

& @Amy, ml& (v2)(ze D,

s ()

e 40 mot appear in this ranking.

where k is such that

, requires attention at stage s +1, if it is not satisfied
= 22 pr(M)h (e,i))].
We will build U =| JU, and V, =V, forall ec o.

Initially all requirements N, , R< oy are declared unsatisfied.

3. CONSTRUCTION
Stage s=0.Let Uy =0, V, = forall e€ 0.

Stage s+1. Part A. Act on the highest priority
requirement, which requires attention or is active (at stage
s +1), if such a requirement exists.

Case 1. If N, requires attention at stage s+1, then set

& (é,i) = fs(é,f+ s) for each {&,i)=e. This action
prevents injury to N, by lower priority requirements, as we
assume that s bounds the use of the halting computation. In

. *
this case, of course, V.., =V ,U_,, =U,.

Define £, (é, )= h, (6,i +5) forall (&,i)>e.
Declare N, satisfied; declare all lower priority R, N

unsatisfied.
Case 2 (a). If R, isactiveat stage s+1 via

y = Ae, &, (e,i),s), then for the given e, i let k, be such
that y = pr(M?)(3k, +1). Now set

Vo =V, Ulpr(M )(3k,), pr(M )Gk},

Up =U, U{pr(M)3k,)} .

Define A'(e,& (e, j),s +1) = Ae, & (e, j+5),5) forall
j=i+1. Also define h

s+l

(e.j)=h(e,j+s) forall j>i+1.
Remark. Let k_ be such that
A (e.& (e, j),s+1) = pr(M?)(3k, +1) for all

j=i+1.Then h, (e, j—1)= pr(M))3(k, —1)+2) (see
Definition 2.2 and the whole construction).



Thus, if Case 2(a) is applied at stage s+1, the marker
l(e,fs (e,i),s) is not moved, but A (e,i) is moved.
Declare R< cqy satisfied; declare all lower priority R, N

unsatisfied.
Define the following function w(e,i,s).

Definition 3.1. For the given e, i let k ,n_ be such that
Ale.& (e,i),s) = pr(M )3k, +1),

Ae,& (e,i+s),s)=pr(M)3n +1).

Then define the function w(e, i, s) in the following way:
w(e,i,0) is undefined; w(e,i,s+1)= pr(M})(3n, +1),
if pr(M ;)(3ks)is included in Vel at stage s+1 applying
Part A Case2(a) and undefined, otherwise.

Remark. Note that if Case 2(a) is applied at stage s +1, then
v, () w(e,i,s+1)>w,(y) (remind  that

y=Ae, g (e,i),s)).
Thus, if eventually P, (Ve Uiy} y)sl/, then the posssible

and

entrance of w(e,i,s+1) in the V,
©f  W,(V,U{yh»),
w(ei,s+1)>wy,(y) Gf (¥,,y;) indeed would have
realized the wit-reducibility).

cannot injure the

computation because

Case 2 (b). If R, requires attention at stage s +1 via
y=A4(e,& (e,i),s) = pr(M{)3k+1)

(it means, that ¥, (Vg Uiy y)[s]sl/ ), then whether

Y, (Ve Uiy} y) [s] equals O or not, we define

A(e.& (e,0),s+1) = Ale,E (e,i +5),5) forall i >i.

Define h:+1 (e, ;) =h, (e,f+s) forall { 2.
Note, that if we apply Case 2(b), then,
(Vx) (x<y =y (0 ).

If ¥, (Ve U{y};y)[s] =0, set
V:M =V, U{y.w(e,i,sy+D} and U, =U U{y}.
where s, is such a number, that s, < s and at stage s, +1

the numbers pr(Mg0 )(3k) and pr(M: )(3k) are included

it means,

in V,, applying Part A Case 2 (a) for requirement R<e’l.> .

Declare R< cqy Ssatisfied; declare all lower priority R, N

unsatisfied.
Case 3. If B, requires attention at stage s +1 , then let m,

be the least of such m, that ¥, (m) l &
(V2)[ze D, (,, = 22 pr(M])(h(e,i))].
If P<e’i> is not satisfied, then set
Via =V, UD, ., U{pr(M )k (e,i)). pr(M})(h,(e.i))}
and U, =U U{pr(M)(h,(e,i)}.
Define A'(e, & (e,1),s+1) = Ae, & (e,i +5),s) forall
{>i and h;l(e,l?) =hx(e,f+s) forall i >i+1.
Thus, P<w.> is, obviously, satisfied.

Declare all lower priority R, N unsatisfied.
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Define &,,(, ), A(,,s+1)and h;l(,) not specified in
Part A, to be the same as &,(,), A(,,s) and h(,),
respectively.

Part B.Let xe W —W,_, and

A(e,x,s+1) = pr(M )3k +1) for some k.
Thendefine V, , =V, U {pr(M)3k+1),

pr(M )3k +1)} and A(e,x+ j,s+1)=

A(e,&,, (e,x+ j+1),s+1) forall je .

Also define h, (e,i+ j)=h_ (e,i+ j+]1) forall je w.
Find all { such that A(e, & (e, D),s+1)=A"(e,x,5+1)

and declare R<e f> unsatisfied for each such i .

Define A(,,s+1), A, (,) not specified in Part B above

to be the same as f( ,,s+1), h;l( ,) , respectively.

4. VERIFICATION

Lemma 4.1. Forall e, i :
1. N, ismet and lim ¢ (e,i) = E(e,i) exists.
2. R

(e,i

, is met and lim A(e, & (e,i),s) exists.

3. P<ej> is met and lim, h (e,i) = h(e,i) exists.

Proof. By induction on j = (e,i). Suppose there exists a

stage s, such that for all &,i < j :
) N, is

met and never acts after stage

Sy, lim, & é,i)= &(e,i) exists and is attained by stage S, .

2) R is met and never acts after stage s,

(e.d)
lim, A(¢, & (e, lA), s) exists and is attained by stage s .

3)1”<

lim h (e,i) = h(e,i) exists and is attained by stage s, .

e} is met and never acts after stage s,,

If 1), 2), 3) take place, then
(H If N ; ever receives attention after stage s,, then

(applying Part A Case I) it is met and never injured, so there
is a stage s, >s,, after which its computation does not

change from divergent to convergent, and after which N ;
does not receive attention. (Else set s, = .)

& (e,;i)y=&(e,i)as N, ,...,Nj never again change & .
(2) After s, =25, when

W, [ E(e,i)+1=W, | &(e,i)+1, then R, acts atmost
twice (probably applying Part A Case 2(a), Part A Case

R

2(b)) and is met, say by stage s; > s, . After stage 5, R,

can move A(e,&(e,i),s) at most once. Also, for all
i > i+1, R, canmove Ale, & (e, ;)’ §) at most twice.
Therefore, A(e, é:s; (e,0),53) =lim, A(e,& (e,i),s) .

3) If P/ ever receives attention after stage s, then it is

met and is satisfied forever.



If P, is satisfied, it doesn't move A, (e,7). So

hﬁ (e,i)=lm_h (e,i)=h(e,i). |

Tﬁen (; istotal &

~Vu)y(WWu#v =D, ,,ND,, =2 =

s >s)@m)ly,,(m{ & (V2)(ze D, ., =

v, (m)

7> pr(M?)h, (e,i))]. So,if (¥, is total &
Vu)(YW)[u#v = D, , N D, . = @1]) , then there
exists (s, > ;) such that (Elm)[(l//ivs4 (m)sL &

(Vo)lze D, = z2pr(M])(h(e,i)] & D,

g (M) o ()

is included into V, at the stage s, +1]. So, P<m.> is met.

If PZN.> is met for all i€ @, then V, is hypersimple.
Lemma 4.2. Forall e, V, <, U®W,.

Proof. In the construction a number k enters V, only if a
number less than or equal to k enters U or enters W, , so
V., U®W,.

Lemma 4.3. For all e, P, is satisfied, that is W, = AV"’ .
Proof. To determine whether x € W, , we need to find a stage
such that A(e, x, s) has attained its limit. Using the oracle v,
, we determine A(e,0),...,A(e, x) (note that

A(e, y,s) changes only if a number < A(e, y,s) enters V).
Find a stage s, suchthat V, [0, +1=V, [0, +1, where
o, = max{A(e,0),...,A(e,x)}. Then xe W, iff xe W, .
Lemma 4.4. V, is T -mitotic, forall e.

Proof (sketch). 1. Prove that Ve1 <5 Ve0 .

We must determine (using the oracle Veo) whether x e Ve1
or not (for arbitrary number x ).

It is obvious, thatif xe M°, then x¢& Ve1 .

Let xe M'. There are the following cases to consider:
(a)If x¢ Me1 , then find z such that

z=max({y x> pr(MHY(}).

Find a stage s, such that

Vi, [ prM)(@) =V, pr(M{)(z) . Then

X€E Vel & xe V;SO . (In this case x can be included in Ve1
only if (3 5, < s,)(3i,m) such that

x> pr(Meo)(hsn (e,i)) and x is included in Vel (with
prM;)(h, (e,i)), pr(M,;)(h (e,D) and D, ).
applying the Part A Case 3 at stage s, +1).

(b) If xe M;, let x=pr(Mel)(k) for some k. Find a
stage s, such that stJ pr(M2)(k) =V pr(M?)(k) .
Then we'll show

xeV! oxeV), 4.5)

Note, that for x=pr(Mel)(k) (when case (b) from

Lemma 4.4. I is applied), if x enters into Ve1 at some stage f,
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. 0 0 .
then a certain element from M | pr(M, )(k) enters into set

Ve0 FpV(Mf)(k) at the same stage .
We'll consider that in details.

Note, that x can be included in Vel only applying Part A

Case 2(a) or Part A Case 2(b) or Part A Case 3 or Part B.
We'll show, that in all these cases the statement (4.5) takes
place.

To prove the statement (4.5) there are three subcases of case
(b) to consider:

(b)) If (35, <s,) such that x is included in Vg1 (with
some Dy/’ (m
(4.5) takes place (as in case (a) of the proof of
Lemma 4.4.1.).

(by) If (3 s, <s,) such that x is included in Vel at stage
s, +1, applying Part A Case 2(b), then (3 x, <x) ( x

,) atstage +1, applying Part A Case 3, then

is included in Ve0 at stage s, +1) because of the

construction and the definition of the function w(e,i,s)
(see Definition 3.1). So (4.5) takes place.

(b3) If (EI 5 < So) such that the number x = pr(Mel)(k)
is included in Vg1 at stage s, +1, applying Part B or
applying Part A Case 2(a), then the number pr(M))(k) is

included in Vg0 at stage s, +1, as it follows from the

construction. So (4.5) takes place.

Thus, Vg1 < Ve0 . Therefore, V, <, Ve0 (because

Vg0 =V, NM 0). But, obviously, Ve0 <; V, and, therefore,
_ o0

‘/e =r V(' ‘

II. Prove that Vg0 < Vg1 .

We must determine (using the oracle Vg1 ) whether x€ Vg0

or not (for an arbitrary number X ).

It is obvious, that if xe M', then x ¢ Ve0 .

Let xe€ M. There are the following cases to consider:
(@ xe&M?; () Fk)(x=pr(M?)3k));

() @k)(x=pr(M)Bk+1) & pr(M GO V,):
(d) @k)(x=pr(M])Bk+1)& pr(M})(3k)e V).

In all these cases, it is possible to answer the question of
whether x belongs to the set Ve0 according to the methods
indicated in the proof of Part I of Lemma 4.4.
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