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ABSTRACT
Let us adduce some definitions. 

If A is a nonrecursive computably enumerable (c.e.) set, then 

a splitting of A  is a pair A1, A2  of disjoint c.e. sets such that 

A1 U A2 = A.   

A c.e. set  A  is T-mitotic (wtt-mitotic) if  there is a splitting 

A1, A2  of A  such that A1 ≡T A2≡T A  (A1 ≡wtt A2≡wtt A ).

In this article it is proved, that there exists a low c.e. degree 

u such that if v is a c.e. degree and u ≤ v,  then v contains a

hypersimple T-mitotic set, which is not wtt-mitotic.

Keywords 
Mitotic set, low degree, T-reducibility, wtt-reducibility, 

hypersimple set. 

1. INTRODUCTION
We'll use notions and terminology introduced in Soare [5]. 

Notations. We deal with sets and functions over the 

nonnegative integers {0,1, 2, }ω = … .

Let 
eϕ  be the 

the  partial recursive function in the standard 

listing (see Soare [5], p.15, p.25). 

If  A ω⊆  and e ω∈ , let ( ) ( : )A

e ex A xΦ = Φ =  { } ( )A
e x

(see Soare [5], pp. 48-50).

Aχ denotes the characteristic function of A , which is often

identified with A  and written simply as ( )A x . f ¹ x  

denotes the restriction of f to arguments y x< , and A ¹ x

denotes A
χ ¹ x .   , 1( )e at s xϕ + ↓  denotes  , 1( )e s xϕ + ↓

,& ( )e s xϕ ↑ . { : ( ) }e e xW dom x xϕ ϕ= = ↓ .

, 1e at sx W +∈  denotes , 1 ,e s e sx W W+∈ − .

The definitions of  pairing function ( , ) ,x y x yτ = and 

canonical index y of the given finite set  A (i.e., yD A= ) are

given in Soare [5]. 

Definition 1.2. (i) A sequence { }n n
F

ω∈
 of  finite sets is a 

strong (weak) array if there is a recursive function f  such 

that ( ) ( )( )n f n n f nF D F W= = .

(ii) An array is disjoint if its members are pairwise disjoint.

(iii) An infinite set B  is hyperimmune (hyperhyperimmune),

if  there is no disjoint strong (weak) array { }n n
F

ω∈  
such that 

nF B ≠ ∅∩  for all n .

(iv) A c.e. set A is hypersimple, abbreviated h-simple,

(hyperhypersimple, abbreviated hh-simple) if A  is 

hyperimmune (hiperhyperimmune) (see Soare [5], p. 80). 

Definition 1.3. If 0 1 2{ }A a a a= < < <�  is an infinite

set, the principal function of A  is ( )pr A , where 

( )( ) npr A n a= .

Definition 1.4. (i) A degree ′≤ 0a is low if ′ ′0a =  , and

high  if ′ ′′0a = (the highest possible value).

(ii) A set 
TA ′≤ ∅ is  low (high), if deg( )A is low (high)

(see Soare [5], p.71). 

The definitions of  a dense simple set, a strongly hypersimple 

(sh-simple set), a finitely strongly hypersimple (fsh-simple) 

set notions are given in Soare [5]. 

Definition 1.5.  A c.e. degree a  is contiguous  if  for every 

pair ,A B of  c.e. sets in ,a .wttA B≡
Note that each contiguous degree, by definition, doesn’t 

contain T-mitotic sets, which are not wtt-mitotic. 

Ladner and  Sasso [3] have proved, that for every nonzero 

c.e. degree b  there is a nonzero c.e. degree ≤a b  such that

a  is contiguous.

E. J. Griffiths has proved (see [2]) the following Theorem:

There exists a low c.e. degree u such that if  v is a c.e.

degree and  u ≤ v , then v is not completely mitotic.

In the theorem below it is proved that there exists an infinite

class of degrees, containing hypersimple T-mitotic sets,

which are not wtt-mitotic.

Theorem. There exists a low c.e. degree u such that if  v is a

c.e. degree and u ≤ v, then v contains a hypersimple

T -mitotic set, which is not wtt-mitotic.

Notice, that it is impossible to replace the term "h-simple" in

our theorem with any of the following  terms: "dense

simple", "fsh-simple", "sh-simple", "hh-simple", "maximal";

since dense simple, fsh-simple, sh-simple, hh-simple,

maximal sets are high (Martin [4], see also Soare [5],

pp. 210-213).

2. PRELIMINARIES FOR THE

THEOREM'S PROOF
Proof. This statement is proved using a finite injury priority 

argument. We build a set U  in stages s , = ss
U U

ω∈∪ . 

The set U  will be a member of degree u, mentioned 

in Theorem. We also construct sets { }e eV ω∈  to witness that

each c.e. degree in the upper cone of  u contains a T -mitotic 

but non-wtt-mitotic set. 

Let  γ  be a recursive function from ω  onto 
2ω .

Define ( , )i iψΨ  to be the couple 
0 1

( , )i iϕΦ for all  i ,

where 
0 1( ) ( , )i i iγ = .

Construct U , { }e eV ω∈  to satisfy, for all e ω∈ , the

requirements: 

: ( ) ( ( ; )[ ] ) ( ; )e e eN s U e s U e
∞∃ Φ ↓ ⇒ Φ ↓ .
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( ), :( ) ( ( ) ) or ( ) [ { }; ( )]e i i i e eR y y y V y y V yψ〈 〉 ∃ ↑ ∃ ¬ Ψ ↓ =∪

(where iΨ is wtt-reduction with iψ denoting the

corresponding use function). 

,
:[[( ) ( ( ) ) & ( , ) (( )ie i

P y y u v u vψ∀ ↓ ∀ ≠ ⇒

( ) ( ) ( ))] ( )( )].
i i iu v y eD D y D Vψ ψ ψ= ∅ ⇒ ∃ ⊆∩  

: =
V

e
e eP W Λ�  for some recursive functional .Λ

We also ensure  that e T eV U W≡ ⊕  (see the Construction

and Lemma 2, Lemma 3). 

If T eU W≤  then the above condition ensures that

e T e T eV U W W≡ ⊕ ≡ .

If eN  is met for all e ω∈ , then U  is low.

If 
,e i

R is met for all i ω∈ , then eV  isn’t wtt-autoreducible. 

(Note, that a c.e. set A  is wtt-mitotic if and only if A  is 

wtt-autoreducible (see Downey, Stob [2])).  

If 
,e i

P is met for all i ω∈ , then eV is hypersimple. 

The proofs of lowness of  the set U and the Turing equality 

of the sets eV  and eW  are similar to the analogous proofs in 

Theorem 2.2.2 (Griffiths [2] ). 

The proof of non-wtt-mitoticity of eV uses the proof of 

nonmitoticity of  eV  in Theorem 2.2.2 (Griffiths [2] ) with 

considerable changes. 

Definition 2.1. For any  set A ω⊆  and  x ω∈   define the

x -column of A  { }( )
, : , &

x
A y z y z A y x= ∈ = .

Notations. 
( )x

xM ω=  . 
0 1

2 2 1;e e e eM M M M += = ; 

0 0

0

e

e

M M
∞

=

=∪  ; 
1 1

0

e

e

M M
∞

=

=∪ . Thus, ω=10 MM ∪ . 

We also will ensure that 
0 1

e T eV V≡ (where

0 0 1 1= & =e e e eV V M V V M∪ ∩ ).

At each stage s  place markers ( , , )e x sλ  on elements of

0

,e s eV M∩ . Values of λ  will be used both as witnesses to

prevent possible wtt-autoreduction (by the corresponding 

functionals) for sets eV  and to ensure that eW  is 

T -reducible to eV . 

Define functions ,hλ  (at each stage s ) in the following

way: 

Definition 2.2. Initially define 
0( ,0,0) = ( )(1)ee pr Mλ ,

0 0( ,0) = 3 2h e z + ,
0

0( ,1,0) = ( )(3( 1) 1)ee pr M zλ + + , 

where
0 1

0 ( ( ) (3 2) ( ) (1))e ez y pr M y pr Mµ= + > for all 

e ω∈ .

Let , xk z be such that 
0( , ,0) = ( )(3 1)ee x pr M kλ + ,

0 ( , ) = (3 2)xh e x z + , where
0( ( ) (3 2)x ez y pr M yµ= +

1
( ) (3 1))epr M k> + , then define 

0( , 1,0) = ( )(3( 1) 1)e xe x pr M zλ + + + for all ,e x ω∈ .

Also define 0 1( , 1) = 3 2xh e x z ++ +
 
(as a consequence

0

1( , 2,0) = ( )(3( 1) 1)e xe x pr M zλ ++ + + ),  where

0 1

1 1( ( )(3 2) ( )(3( 1) 1)x e e xz y pr M y pr M zµ+ += + > + + for

all ,e x ω∈ .

Also define a function ( , )s e iξ  for all ,e i ω∈  (at each stage

s ). Initially define 0 ( , ) =e i iξ  for all ,e i ω∈ . We use ξ
to ensure that only members of sufficiently large magnitude 

enter U  at stage s , so we can satisfy the lowness 

requirements eN . 

Order the requirements in the following priority ranking:

0 0 0 1 1 1, , , , , , , , , ,n n nN R P N R P N R P… …  

The ˆ{ }e eP ω∈  do not appear in this ranking.

eN  requires attention at stage 1s + , if it is not  satisfied

and ( ; )[ ]e U e sΦ ↓ .

,e iR〈 〉 is active at stage 1s + , if it is not satisfied  and

,( ) ( ( ) ) &i sx y xψ∀ ≤ ↓ 0

, ( )(3 ) =( )e s eV pr M k

1

, ( )(3 ) 0( )e s eV pr M k = , where k  is such that

= ( , ( , ), )sy e e i sλ ξ = 0( )(3 1)epr M k + .

,e iR〈 〉  requires attention at stage 1s + , if  it is not satisfied

and 
0 1

, ,( )(3 ) ( )(3 ) 1( ) ( )e s e e s eV pr M k V pr M k= = & 

( { }; )[ ] ,i eV y y sΨ ↓∪ where k is such that 

= ( , ( , ), )sy e e i sλ ξ = 0( )(3 1)epr M k + .

,e iP〈 〉  requires attention at stage 1s + , if it is not satisfied

& 
,

0

, ( )
( ) ( ) & ( )( ( ) ( , ))].[

i si s m e s
m m z z D z pr M h e iψψ∃ ↓ ∀ ∈ ⇒ ≥  

We will build = ss
U U∪  and ,=s e ss

V V∪  for all e ω∈ .

Initially all requirements eN , ,e iR〈 〉  are declared unsatisfied. 

3. CONSTRUCTION

Stage = 0s . Let 0 =U ∅ , ,0 =eV ∅ for all e ω∈ .

Stage 1s + . Part A.  Act on the highest priority

requirement, which requires attention or is active (at stage 

1s + ), if such a requirement exists.

Case 1. If eN  requires attention at stage  1s + , then set

1
ˆ ˆˆ ˆ( , ) = ( , )s se i e i sξ ξ+ + for each ˆˆ,e i e〈 〉 ≥ . This action

prevents injury to eN  by lower priority requirements, as we 

assume that s  bounds the use of the halting computation. In 

this case, of course, 
*

1 1,s s s sV V U U+ += = .

Define 
*

1
ˆ ˆˆ ˆ( , ) ( , )s sh e i h e i s+ = +  for all ˆˆ,e i e〈 〉 ≥ .

Declare eN  satisfied;  declare all  lower  priority R , N

unsatisfied. 

Case 2 (a). If ,e iR〈 〉 is active at  stage   1s +   via

= ( , ( , ), )sy e e i sλ ξ , then for the given  e, i  let  ks  be such

that 
0( )(3 1).e sy pr M k= +  Now  set 

* 0 1

, 1 ,
= { ( )(3 ), ( )(3 )},

e s e s e s e s
V V pr M k pr M k+ ∪

0

, 1 ,
= { ( )(3 )}

e s e s e s
U U pr M k+ ∪ . 

Define *
( , ( , ), 1) = ( , ( , ), )

s s
e e j s e e j s sλ ξ λ ξ+ + for all

1.j i≥ + Also define 1( , ) ( , )
s s

h e j h e j s+ = + for all 1j i≥ + .

Remark.  Let sk  be such that 

( )* 0, ( , ), 1 ( )(3 1)s e se e j s pr M kλ ξ + = +  for all

1j i≥ + .Then
* 0

1( , 1) ( )(3( 1) 2)s e sh e j pr M k+ − = − + (see

Definition 2.2 and the whole construction). 
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Thus, if Case 2(a) is applied at stage s+1, the marker 

( ), ( , ),se e i sλ ξ  is not moved, but ( , )sh e i  is moved. 

Declare ,e iR〈 〉 satisfied; declare all lower priority R , N

unsatisfied.   

Define the following function ( , , )w e i s . 

Definition 3.1.  For the given  e, i  let  ,s sk n  be such that 

0( , ( , ), ) ( )(3 1)s e se e i s pr M kλ ξ = + ,

0( , ( , ), ) ( )(3 1)s e se e i s s pr M nλ ξ + = + .

Then define the function ( , , )w e i s in the following way: 

( , ,0)w e i   is  undefined; 
1( , , 1) ( )(3 1),e sw e i s pr M n+ = +

if 
1( )(3 )e spr M k is included in 

1

eV  at stage  s+1 applying 

Part A Case2(a) and  undefined, otherwise.

Remark. Note that if Case 2(a) is applied at stage  s +1, then 

, ( )i s yψ ↓  and ( , , 1) ( )iw e i s yψ+ > (remind that

( , ( , ), )sy e e i sλ ξ= ).

Thus, if eventually ( ){ };i eV y yΨ ↓∪ , then the posssible

entrance of ( 1)w e,i,s +  in the Ve  cannot injure the 

computation (of ( { }; )i eV y yΨ ∪ ), because 

( 1) ( )iw e,i,s+ >ψ y  (if ( , )i iψΨ indeed would have

realized the  wtt-reducibility). 

Case 2 (b). If ,e iR〈 〉  requires attention at stage  s +1 via 

( ) 0= , ( , ), ( )(3 1)s ey e e i s pr M kλ ξ = +

(it means, that ( { };e eV yΨ ∪ ) )[ ]y s ↓ ), then whether

( ){ }; [ ]e eV y y sΨ ∪ equals 0 or not, we define

* ˆ ˆ ˆ( , ( , ), 1) = ( , ( , ), ) for all .s se e i s e e i s s i iλ ξ λ ξ+ + ≥

Define 
*

1
ˆ ˆ( , ) ( , )s sh e i h e i s+ = +  for all î i≥ .

Note, that if we apply Case 2(b), then, it means, 

( ) ( ( ) )ix x y xψ∀ ≤ ⇒ ↓ .

If ( ){ }; [ ] 0e eV y y sΨ =∪ , set

{ }*

, 1 , 0, ( , , 1)e s e sV V y w e i s+ = +∪  and  { }1s sU U y+ = ∪ , 

where 0s  is such a number, that 0s s<  and at stage 0 1s +

the numbers 
0( )(3 )epr M k and 

1( )(3 )epr M k  are included 

in eV , applying Part A Case 2 (a) for requirement 
,e i

R . 

Declare ,e iR〈 〉 satisfied; declare all lower priority R , N

unsatisfied. 

Case 3. If ,e iP〈 〉  requires attention at stage s +1 ,  then let 0m

be the least of such m , that  , ( ) &i s mψ ↓

, ( )( )[
i s mz z Dψ∀ ∈ ⇒

0( )( ( , ))]e sz pr M h e i≥ .

If 
,e i

P  is not satisfied, then set 

, 0

* 0 1

, 1 , ( )
( )( ( , )), ( )( ( , )){ }

i se s e s m e s e s
V V D pr M h e i pr M h e iψ+ = ∪ ∪

and  
0

1 = { ( )( ( , ))}s s e sU U pr M h e i+ ∪ . 

Define  
* ˆ( , ( , ), 1) =se e i sλ ξ + ˆ( , ( , ), )se e i s sλ ξ + for all

î i≥  and  
*

1
ˆ ˆ( , ) ( , )s sh e i h e i s+ = +  for all  ˆ 1i i≥ + .

Thus, 
,e i

P  is, obviously, satisfied. 

Declare all lower priority R , N  unsatisfied.

Define 1( , ) ,sξ +
* ( , , 1)sλ + and

*

1( , )sh +  not specified in 

Part A, to be the same as ( , )sξ , ( , , )sλ  and ( , )sh ,

respectively. 

Part B. Let 1s sx W W+∈ − , and 

* 0
( , , 1) = ( )(3 1)ee x s pr M kλ + + for some .k

Then define 
*

, 1 , 1=e s e sV V+ + ∪
0( )(3 1){ epr M k + ,

1( )(3 1)}epr M k +  and ( , , 1) =e x j sλ + +
*

1( , ( , 1), 1)se e x j sλ ξ + + + + for all j ω.∈

Also define 
*

1 1( , ) ( , 1)s sh e i j h e i j+ ++ = + + for all j ω∈ .

Find all î  such that
*

1
ˆ( , ( , ), 1) ( , , 1)se e i s e x sλ ξ λ+ + ≥ +

and  declare ˆ,e i
R
〈 〉

unsatisfied  for each such î .

Define ( , , 1)sλ + , 1( , )sh +  not specified in Part B above 

to be the same as 
*( , , 1),sλ + *

1( , )sh + , respectively. 

4. VERIFICATION

Lemma 4.1.  For all e , i : 

1. eN  is met and lim ( , ) = ( , )s s e i e iξ ξ exists.

2. ,e iR
〈 〉  is met and lim ( , ( , ), )s se e i sλ ξ exists.

3. 〉〈 ieP , is met and lim ( , ) ( , )s sh e i h e i= exists.

Proof. By induction on = ,j e i〈 〉 . Suppose there exists a 

stage 0s  such that for all ˆˆ, <e i j :

1) eN  is met and never acts after stage 

0s , ˆˆ ˆlim ( , ) = ( , )s s e i e iξ ξ exists and is attained by stage 0s . 

2) ˆˆ,e i
R
〈 〉

is met and never acts after stage 0s , 

ˆˆ ˆlim ( , ( , ), )s se e i sλ ξ exists and is attained by stage 0s . 

3) 〉〈 ieP , is met and never acts after stage 0s , 

lim ( , ) ( , )s sh e i h e i=  exists and is attained by stage 0s . 

If  1), 2), 3) take place, then  

(1) If jN  ever receives attention after stage 0s ,  then 

(applying Part A Case 1) it is met and never injured, so there 

is a stage 1 0>s s , after which its computation does not 

change from divergent to convergent, and after which jN

does not receive attention. (Else set 1 0=s s .) 

1( , ) = ( , )s e i e iξ ξ+ as 0 , , jN N… never again change ξ .

(2) After 2 1s s≥  when

2, ( , ) 1 = ( , ) 1e s eW e i W e iξ ξ+ +¹ ¹ , then ,e iR
〈 〉  acts  at most 

twice  (probably applying  Part A Case 2(a), Part A Case 

2(b)) and is met, say by stage 3 2>s s . After stage 2s  ,e iR
〈 〉

can move ( , ( , ), )e e i sλ ξ at most once. Also, for all

,
ˆ 1, e ii i R〈 〉≥ + can move ˆ( , ( , ), )e e i sλ ξ  at most twice.

Therefore, 
3 3( , ( , ), ) lim ( , ( , ), )s s se e i s e e i sλ ξ λ ξ= .

(3) If jP  ever receives attention after stage 3s , then it is 

met and is satisfied forever. 
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If jP is satisfied, it doesn't move 
3
( , )sh e i .  So 

3
( , ) lim ( , ) ( , )s s sh e i h e i h e i= = .

Then ( iψ is total  & 

( ) ( )( ) ( )[ ])
i iu vu v u v D Dψ ψ∀ ∀ ≠ ⇒ = ∅ ⇒∩

,3 , ( )( ) ( )[ ( ) & ( )(
i si s ms s m m z z Dψψ∃ > ∃ ↓ ∀ ∈ ⇒

0( ) ( , ))].e sz pr M h e i≥

 

So, if ( iψ is  total   & 

( ) ( ) then there( ) ( )[ ]) ,
i iu vu v u v D Dψ ψ∀ ∀ ≠ ⇒ = ∅∩

exists 4 3( )s s>  such that  
4,( ) ( ) &[( i sm mψ∃ ↓

, 4
( )( )[

i s mz z Dψ∀ ∈ ⇒
, 4

0

( )( )( ( , ))] &
i se s mz pr M h e i Dψ≥

is included  into eV at the stage 4 1s + ]. So,
,e i

P  is  met. 

If 
,e i

P is met for all i ω∈ , then eV is hypersimple. 

Lemma 4.2.  For all e , e T eV U W≤ ⊕ .

Proof. In the construction a number k  enters eV  only if a 

number less than or equal to k  enters U  or enters eW , so 

e T eV U W≤ ⊕ .

Lemma 4.3. For all e , eP  is satisfied, that is =
V

e
eW Λ .

Proof. To determine whether ex W∈ , we need to find a stage

such that ( , , )e x sλ  has attained its limit. Using the oracle eV

, we determine ( ,0), , ( , )e e xλ λ… (note that

( , , )e y sλ changes only if a number ( , , )e y sλ≤ enters eV ). 

Find a stage xs  such that , 1 = 1,e s x e xx
V Vσ σ+ +¹ ¹  where

max= { ( ,0), , ( , )}.x e e xλ λσ … Then ex W∈  iff ,e sx
x W∈ .

Lemma 4.4.  eV  is T -mitotic ,  for all e . 

Proof (sketch).  I.  Prove that 
1 0

e T eV V≤ .

We must determine (using the oracle 
0

eV ) whether 
1

ex V∈
or not (for arbitrary number x ). 

It is obvious, that if 
0x M∈ , then

1

ex V∉ .

Let 
1x M∈ . There are the following cases to consider:

(a) If
1

ex M∉ , then find z  such that

1max ( )( )({ })ez y x pr M y= > . 

Find a stage 0s such that 

0 0

,
0

0 0( )( ) = ( )( )e s e eepr M z pr MV zV¹ ¹ .  Then 

1 1

,
0

e e sx V x V∈ ⇔ ∈ . (In this case x can be included in 
1

eV

only if 1 0( )( , )s s i m∃ < ∃ such  that

0

0
( )( ( , ))e sx pr M h e i>  and x  is included in 

1

eV  (with 

0

0
( )( ( , ))e spr M h e i , 

1

1
( )( ( , ))e spr M h e i and ( )i mDψ ), 

applying  the  Part A  Case 3 at stage 1 1s + ).

(b) If
1

ex M∈ , let
1

( )( )ex pr M k= for some k . Find a

stage 0s  such that 
0 0

,
0

0 0( )( ) = ( )( )e s e eepr M k pr MV kV¹ ¹ . 

Then we'll show 
0

1 1

,e e sx V x V∈ ⇔ ∈  (4.5) 

Note, that for 
1

( )( )ex pr M k= (when case (b) from 

Lemma 4.4. I is applied), if  x enters into 
1

eV  at some stage t, 

then a certain element from 
0 0( )( )ee pr MM k¹  enters into set 

0 0( )( )ee pr MV k¹ at the same stage t. 

We'll consider that in details. 

Note, that x can be included  in 
1

eV  only applying Part A 

Case 2(a) or Part A Case 2(b) or Part A Case 3 or Part B. 

We'll show, that in all these cases the statement (4.5) takes 

place. 

To prove the statement (4.5) there are three subcases of  case 

(b) to consider:

(b1) If 
1 0( )s s∃ <  such that x  is included in

1

eV  (with 

some ( )i mDψ )  at stage 1 1s + , applying Part A Case 3, then

(4.5) takes place (as in case (a) of the proof of 

 Lemma 4.4. I.). 

(b2) If 1 0( )s s∃ <  such that x  is included in 
1

eV  at stage 

1 1s + , applying  Part A Case 2(b), then 1( )x x∃ < ( 1x

0
is included  in  eV at stage 1 1s + ) because of the 

construction and the definition of  the  function ( , , )w e i s

(see Definition 3.1). So (4.5) takes place. 

(b3) If ( )1 0s s∃ <  such that the number 1( )( )ex pr M k=

is included in 
1

eV at stage 1 1s + , applying Part B or

applying Part A Case 2(a), then the number 
0( )( )epr M k  is 

included in 
0

eV  at stage 1 1s + , as it follows from the

construction. So (4.5) takes place. 

Thus, 
1 0

e T eV V≤ . Therefore, 
0

e T eV V≤  (because

0 0

e eV V M= ∩ ). But, obviously,
0

e T eV V≤ and, therefore,

0

e T eV V≡ .

II. Prove that
0 1

e T eV V≤ .

We must determine (using the oracle 
1

eV ) whether 
0

ex V∈
or not (for an arbitrary number x ). 

It is obvious, that if 
1x M∈ , then

0

ex V∉ .

Let 
0x M∈ . There are the following cases to consider:

(a) 
0

ex M∉ ; (b) 
0( ) ( ( )(3 ))ek x pr M k∃ = ; 

(c)  
0 1 1( ) ( ( )(3 1) & ( )(3 ) )e e ek x pr M k pr M k V∃ = + ∉ ;

(d)  
0 1 1( )( ( )(3 1)& ( )(3 ) ).e e ek x pr M k pr M k V∃ = + ∈  

In all these cases, it is possible to answer the question of 

whether x   belongs to the set 
0

eV  according to the methods 

indicated in the proof of  Part I of Lemma 4.4. 
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