On the Upper Cone of Degrees Containing Hypersimple T-Mitotic Sets Which are not wtt-Mitotic

Arsen Mokatsian

Institute for Informatics and Automation Problems of the National Academy of Sciences of the Republic of Armenia

Yerevan, Armenia

e-mail: arsenmokatsian@gmail.com

ABSTRACT

Let us adduce some definitions.

If A is a nonrecursive computably enumerable (c.e.) set, then a splitting of A is a pair A_1 , A_2 of disjoint c.e. sets such that $A_1 \cup A_2 = A$.

A c.e. set A is T-mitotic (wtt-mitotic) if there is a splitting A_1, A_2 of A such that $A_1 \equiv_T A_2 \equiv_T A$ ($A_1 \equiv_{wtt} A_2 \equiv_{wtt} A$).

In this article it is proved, that there exists a low c.e. degree u such that if v is a c.e. degree and $u \le v$, then v contains a hypersimple T-mitotic set, which is not wtt-mitotic.

Keywords

Mitotic set, low degree, *T*-reducibility, *wtt*-reducibility, hypersimple set.

1. INTRODUCTION

We'll use notions and terminology introduced in Soare [5].

Notations. We deal with sets and functions over the nonnegative integers $\omega = \{0,1,2,...\}$.

Let φ_e be the e^{th} partial recursive function in the standard listing (see Soare [5], p.15, p.25).

If $A \subseteq \omega$ and $e \in \omega$, let $\Phi_e^A(x) = \Phi_e(A:x) = \{e\}^A(x)$ (see Soare [5], pp. 48-50).

 \mathcal{X}_A denotes the characteristic function of A, which is often identified with A and written simply as A(x). $f \upharpoonright x$

denotes the restriction of f to arguments y < x, and $A \upharpoonright x$ denotes $\mathcal{X}_A \upharpoonright x$. $\varphi_{e,q(x+1)}(x) \downarrow$ denotes $\varphi_{e,x+1}(x) \downarrow$

& $\varphi_{e,s}(x) \uparrow . W_e = dom \varphi_e = \{x : \varphi_x(x) \downarrow \}.$

 $x \in W_{e,ats+1}$ denotes $x \in W_{e,s+1} - W_{e,s}$.

The definitions of pairing function $\tau(x, y) = \langle x, y \rangle$ and canonical index y of the given finite set A (i.e., $D_y = A$) are given in Soare [5].

Definition 1.2. (i) A sequence $\{F_n\}_{n\in\omega}$ of finite sets is a strong (weak) array if there is a recursive function f such that $F_n = D_{f(n)}(F_n = W_{f(n)})$.

(ii) An array is *disjoint* if its members are pairwise disjoint.

(iii) An infinite set B is hyperimmune (hyperhyperimmune), if there is no disjoint strong (weak) array $\left\{F_n\right\}_{n\in\omega}$ such that $F_n\cap B\neq\varnothing$ for all n.

(iv) A c.e. set A is hypersimple, abbreviated h-simple, (hyperhypersimple, abbreviated hh-simple) if \overline{A} is hyperimmune (hiperhyperimmune) (see Soare [5], p. 80).

Definition 1.3. If $A = \{a_0 < a_1 < a_2 < \cdots\}$ is an infinite set, the *principal function* of A is pr(A), where $pr(A)(n) = a_n$.

Definition 1.4. (i) A degree $a \le 0'$ is low if a' = 0', and high if a' = 0'' (the highest possible value).

(ii) A set $A \leq_T \emptyset'$ is low (high), if $\deg(A)$ is low (high) (see Soare [5], p.71).

The definitions of a *dense simple set*, a *strongly hypersimple* (*sh-simple set*), a *finitely strongly hypersimple* (*fsh-simple*) *set* notions are given in Soare [5].

Definition 1.5. A c.e. degree a is *contiguous* if for every pair A, B of c.e. sets in a, $A \equiv_{wt} B$.

Note that each contiguous degree, by definition, doesn't contain *T*-mitotic sets, which are not *wtt*-mitotic.

Ladner and Sasso [3] have proved, that for every nonzero c.e. degree b there is a nonzero c.e. degree $a \le b$ such that a is contiguous.

E. J. Griffiths has proved (see [2]) the following Theorem: There exists a low c.e. degree u such that if v is a c.e. degree and $u \le v$, then v is not completely mitotic.

In the theorem below it is proved that there exists an infinite class of degrees, containing hypersimple *T*-mitotic sets, which are not *wtt*-mitotic.

Theorem. There exists a low c.e. degree u such that if v is a c.e. degree and $u \le v$, then v contains a hypersimple T-mitotic set, which is not wtt-mitotic.

Notice, that it is impossible to replace the term "h-simple" in our theorem with any of the following terms: "dense simple", "fsh-simple", "sh-simple", "hh-simple", "maximal"; since dense simple, fsh-simple, sh-simple, hh-simple, maximal sets are high (Martin [4], see also Soare [5], pp. 210-213).

2. PRELIMINARIES FOR THE THEOREM'S PROOF

Proof. This statement is proved using a finite injury priority argument. We build a set U in stages s, $U = \bigcup_{s \in a} U_s$.

The set U will be a member of degree u, mentioned in Theorem. We also construct sets $\{V_e\}_{e\in\omega}$ to witness that each c.e. degree in the upper cone of u contains a T-mitotic but non-wtt-mitotic set.

Let γ be a recursive function from ω onto ω^2 .

Define (Ψ_i,ψ_i) to be the couple $(\Phi_{i_0},\varphi_{i_1})$ for all i , where $\gamma(i)=(i_0,i_1)$.

Construct U , $\{V_e\}_{e\in\omega}$ to satisfy, for all $e\in\omega$, the requirements:

 $N_e: (\exists^{\infty} s)(\Phi_e(U;e)[s]\downarrow) \Rightarrow \Phi_e(U;e)\downarrow.$

 $R_{(e,i)}: (\exists y) (\psi_i(y) \uparrow) \text{ or } (\exists y) \neg [\Psi_i (V_e \cup \{y\}; y) \downarrow = V_e(y)]$ (where Ψ_i is *wtt*-reduction with ψ_i denoting the corresponding use function).

$$\begin{split} P_{\langle e,i\rangle} : & [[(\forall y)(\psi_i(y)\downarrow) \& (\forall u,v)((u\neq v) \Rightarrow \\ D_{\psi_i(u)} \cap D_{\psi_i(v)} = & \varnothing)] \Rightarrow (\exists y)(D_{\psi_i(y)} \subseteq V_e)]. \end{split}$$

 \tilde{P}_e : $W_e = \Lambda^{V_e}$ for some recursive functional Λ .

We also ensure that $V_e \equiv_T U \oplus W_e$ (see the Construction and Lemma 2, Lemma 3).

If $U \leq_T W_e$ then the above condition ensures that $V_e \equiv_T U \oplus W_e \equiv_T W_e$.

If N_e is met for all $e \in \omega$, then U is low.

If $R_{\langle e,i\rangle}$ is met for all $i\in \omega$, then V_e isn't wtt-autoreducible.

(Note, that a c.e. set A is wtt-mitotic if and only if A is wtt-autoreducible (see Downey, Stob [2])).

If $P_{\langle e,i\rangle}$ is met for all $i \in \omega$, then V_e is hypersimple.

The proofs of lowness of the set U and the Turing equality of the sets V_e and W_e are similar to the analogous proofs in Theorem 2.2.2 (Griffiths [2]).

The proof of non-wtt-mitoticity of V_e uses the proof of nonmitoticity of V_e in Theorem 2.2.2 (Griffiths [2]) with considerable changes.

Definition 2.1. For any set $A \subseteq \omega$ and $x \in \omega$ define the x-column of A $A^{(x)} = \{\langle y, z \rangle : \langle y, z \rangle \in A \& y = x \}$.

Notations.
$$M_x = \omega^{(x)}$$
 . $M_e^0 = M_{2e}$; $M_e^1 = M_{2e+1}$;

$$M^{0} = \bigcup_{e=0}^{\infty} M_{e}^{0}$$
; $M^{1} = \bigcup_{e=0}^{\infty} M_{e}^{1}$. Thus, $M^{0} \cup M^{1} = \omega$.

We also will ensure that $V_e^0 \equiv_T V_e^1$ (where $V_e^0 = V_e \cup M^0$ & $V_e^1 = V_e \cap M^1$).

At each stage s place markers $\lambda(e,x,s)$ on elements of $\overline{V}_{e,s} \cap M_e^0$. Values of λ will be used both as witnesses to prevent possible wtt-autoreduction (by the corresponding functionals) for sets V_e and to ensure that W_e is T-reducible to V_e .

Define functions λ, h (at each stage s) in the following way:

Definition 2.2. Initially define $\lambda(e,0,0) = pr(M_e^0)(1)$,

$$h_0(e,0) = 3z_0 + 2$$
, $\lambda(e,1,0) = pr(M_e^0)(3(z_0 + 1) + 1)$,

where $z_0 = \mu y(pr(M_e^0)(3y+2) > pr(M_e^1)(1))$ for all $e \in M$.

Let k, z_x be such that $\lambda(e, x, 0) = pr(M_e^0)(3k+1)$,

$$h_0(e,x) = (3z_x + 2)$$
 , where $z_x = \mu y (pr(M_e^0)(3y + 2)$

 $> pr(M_a^1)(3k+1)$, then define

 $\lambda(e, x+1, 0) = pr(M_e^0)(3(z_x+1)+1)$ for all $e, x \in \omega$.

Also define $h_0(e, x+1) = 3z_{x+1} + 2$ (as a consequence

$$\lambda(e, x+2, 0) = pr(M_e^0)(3(z_{x+1}+1)+1)$$
, where

$$z_{x+1} = \mu y(pr(M_e^0)(3y+2) > pr(M_e^1)(3(z_{x+1}+1)+1) \text{ for all } e, x \in \omega.$$

Also define a function $\xi_s(e,i)$ for all $e,i \in \omega$ (at each stage s). Initially define $\xi_0(e,i)=i$ for all $e,i \in \omega$. We use ξ to ensure that only members of sufficiently large magnitude enter U at stage s, so we can satisfy the lowness requirements N_e .

Order the requirements in the following priority ranking: $N_0, R_0, P_0, N_1, R_1, P_1, \dots, N_n, R_n, P_n, \dots$

The $\{\hat{P}_e\}_{e\in\omega}$ do not appear in this ranking.

 N_e requires attention at stage s+1, if it is not satisfied and $\Phi_a(U;e)[s] \downarrow$.

 $R_{(e,i)}$ is active at stage s+1, if it is not satisfied and

$$(\forall x \leq y) (\psi_{i,s}(x) \downarrow) \& V_{e,s}(pr(M_e^0)(3k)) =$$

 $V_{e_s}(pr(M_e^1)(3k)) = 0$, where k is such that

$$y = \lambda(e, \xi_s(e, i), s) = pr(M_e^0)(3k+1)$$
.

 $R_{\langle e,i\rangle}$ requires attention at stage s+1, if it is not satisfied

and $V_{e,s}(pr(M_e^0)(3k)) = V_{e,s}(pr(M_e^1)(3k)) = 1$ & $\Psi_i(V_e \cup \{y\}; y)[s] \downarrow$, where k is such that $y = \lambda(e, \xi_s(e, i), s) = pr(M_e^0)(3k+1)$.

 $P_{(e,i)}$ requires attention at stage s+1, if it is not satisfied & $(\exists m)[\Psi_{i,s}(m)\downarrow\&(\forall z)(z\in D_{\psi_{i,s}(m)}\Rightarrow z\geq pr(M_e^0)h_s(e,i))].$

We will build $U = \bigcup U_s$ and $V_s = \bigcup V_{e,s}$ for all $e \in \omega$.

Initially all requirements N_e , $R_{(e,i)}$ are declared unsatisfied.

3. CONSTRUCTION

Stage s=0 . Let $U_0=\varnothing$, $V_{e,0}=\varnothing$ for all $e\in\omega$.

Stage s+1. Part A. Act on the highest priority requirement, which requires attention or is active (at stage s+1), if such a requirement exists.

Case 1. If N_e requires attention at stage s+1, then set $\xi_{s+1}(\hat{e},\hat{i})=\xi_s(\hat{e},\hat{i}+s)$ for each $\langle \hat{e},\hat{i}\rangle \geq e$. This action prevents injury to N_e by lower priority requirements, as we assume that s bounds the use of the halting computation. In this case, of course, $V_{s+1}^*=V_s$, $U_{s+1}=U_s$.

Define $h_{s+1}^*(\hat{e},\hat{i}) = h_s(\hat{e},\hat{i}+s)$ for all $\langle \hat{e},\hat{i}\rangle \geq e$.

Declare N_{e} satisfied; declare all lower priority R, N unsatisfied.

Case 2 (a). If $R_{(e,i)}$ is active at stage s+1 via

 $y = \lambda(e, \xi_s(e, i), s)$, then for the given e, i let k_s be such

that $y = pr(M_e^0)(3k_s + 1)$. Now set

 $V_{e,s+1}^* = V_{e,s} \cup \{pr(M_e^0)(3k_s), pr(M_e^1)(3k_s)\},$

 $U_{e,s+1} = U_{e,s} \cup \{ pr(M_e^0)(3k_s) \}.$

Define $\lambda^*(e, \xi_s(e, j), s+1) = \lambda(e, \xi_s(e, j+s), s)$ for all $j \ge i+1$. Also define $h_{s+1}(e, j) = h_s(e, j+s)$ for all $j \ge i+1$.

Remark. Let k_s be such that

$$\lambda^* (e, \xi_s(e, j), s+1) = pr(M_e^0)(3k_s + 1)$$
 for all

 $j \ge i+1$. Then $h_{s+1}^*(e, j-1) = pr(M_e^0)(3(k_s-1)+2)$ (see Definition 2.2 and the whole construction).

Thus, if Case 2(a) is applied at stage s+1, the marker $\lambda(e, \xi_s(e, i), s)$ is not moved, but $h_s(e, i)$ is moved.

Declare $R_{\langle e,i\rangle}$ satisfied; declare all lower priority R, N unsatisfied.

Define the following function w(e, i, s).

Definition 3.1. For the given e, i let k_s , n_s be such that

$$\lambda(e,\xi_s(e,i),s) = pr(M_e^0)(3k_s+1),$$

$$\lambda(e, \xi_s(e, i+s), s) = pr(M_e^0)(3n_s + 1)$$
.

Part A Case2(a) and undefined, otherwise.

Then define the function w(e,i,s) in the following way:

w(e,i,0) is undefined; $w(e,i,s+1) = pr(M_e^1)(3n_s+1)$, if $pr(M_e^1)(3k_s)$ is included in V_e^1 at stage s+1 applying

Remark. Note that if Case 2(a) is applied at stage s+1, then $\psi_{i,s}(y) \downarrow$ and $w(e,i,s+1) > \psi_i(y)$ (remind that $y = \lambda(e,\xi_s(e,i),s)$).

Thus, if eventually $\Psi_i\left(V_e\cup\{y\};y\right)\downarrow$, then the posssible entrance of w(e,i,s+1) in the V_e cannot injure the computation (of $\Psi_i(V_e\cup\{y\};y)$), because $w(e,i,s+1)>\psi_i(y)$ (if (Ψ_i,ψ_i) indeed would have realized the wtt-reducibility).

Case 2 (b). If $R_{(e,i)}$ requires attention at stage s+1 via

$$y = \lambda(e, \xi_s(e, i), s) = pr(M_e^0)(3k+1)$$

(it means, that $\Psi_e(V_e \cup \{y\};) y)[s] \downarrow$), then whether $\Psi_e(V_e \cup \{y\}; y)[s]$ equals 0 or not, we define

$$\lambda^*(e, \xi_s(e, \hat{i}), s+1) = \lambda(e, \xi_s(e, \hat{i}+s), s) \text{ for all } \hat{i} \ge i.$$

Define $h_{s+1}^*(e,\hat{i}) = h_s(e,\hat{i}+s)$ for all $\hat{i} \ge i$.

Note, that if we apply Case 2(b), then, it means, $(\forall x) \ (x \le y \Rightarrow \psi_i(x) \downarrow)$.

If
$$\Psi_e(V_e \cup \{y\}; y)[s] = 0$$
, set

$$\begin{split} &V_{e,s+1}^* = V_{e,s} \cup \left\{y, w(e,i,s_0+1)\right\} \text{ and } &U_{s+1} = U_s \cup \left\{y\right\}, \\ &\text{where } s_0 \text{ is such a number, that } s_0 < s \text{ and at stage } s_0 + 1 \end{split}$$
 the numbers $&pr(M_e^0)(3k) \text{ and } pr(M_e^1)(3k) \text{ are included}$ in V_e , applying Part A Case 2 (a) for requirement $R_{\langle e,i\rangle}$.

Declare $R_{\langle e,i\rangle}$ satisfied; declare all lower priority R, N unsatisfied.

Case 3. If $P_{\langle e,i\rangle}$ requires attention at stage s+1, then let m_0 be the least of such m, that $\psi_{i,s}(m)\downarrow \&$

$$(\forall z)[z \in D_{\psi_{s,\epsilon}(m)} \Rightarrow z \ge pr(M_e^0)(h_s(e,i))].$$

If $P_{(e,i)}$ is not satisfied, then set

$$V_{e,s+1}^* = V_{e,s} \cup D_{\psi_{i,c}(m_0)} \cup \{ pr(M_e^0)(h_s(e,i)), pr(M_e^1)(h_s(e,i)) \}$$

and
$$U_{s+1} = U_s \bigcup \{ pr(M_a^0)(h_s(e,i)) \}$$
.

Define $\lambda^*(e, \xi_s(e, \hat{i}), s+1) = \lambda(e, \xi_s(e, \hat{i}+s), s)$ for all $\hat{i} \ge i$ and $h_{s+1}^*(e, \hat{i}) = h_s(e, \hat{i}+s)$ for all $\hat{i} \ge i+1$.

Thus, $P_{(e,i)}$ is, obviously, satisfied.

Declare all lower priority R, N unsatisfied.

Define $\xi_{s+1}(,)$, $\lambda^*(,,s+1)$ and $h_{s+1}^*(,)$ not specified in Part A, to be the same as $\xi_s(,)$, $\lambda(,,s)$ and $h_s(,)$, respectively.

Part B. Let $x \in W_{s+1} - W_s$, and

 $\lambda^*(e, x, s+1) = pr(M_e^0)(3k+1)$ for some k.

Then define $V_{e,s+1} = V_{e,s+1}^* \cup \{pr(M_e^0)(3k+1),$

 $pr(M_e^1)(3k+1)$ and $\lambda(e, x+j, s+1) =$

 $\lambda^*(e, \xi_{s+1}(e, x+j+1), s+1)$ for all $j \in \omega$.

Also define $h_{s+1}(e,i+j) = h_{s+1}^{\quad *}(e,i+j+1)$ for all $j \in \omega$. Find all \hat{i} such that $\lambda(e,\xi_{s+1}(e,\hat{i}),s+1) \geq \lambda^*(e,x,s+1)$ and declare $R_{(e,\hat{i})}$ unsatisfied for each such \hat{i} .

Define $\lambda(,,s+1)$, $h_{s+1}(,)$ not specified in Part B above to be the same as $\lambda^*(,,s+1)$, $h_{s+1}^*(,)$, respectively.

4. VERIFICATION

Lemma 4.1. *For all e* , *i* :

- 1. N_e is met and $\lim_{s} \xi_s(e,i) = \xi(e,i)$ exists.
- 2. $R_{(e,i)}$ is met and $\lim_{s} \lambda(e, \xi_s(e,i), s)$ exists.
- 3. $P_{(e,i)}$ is met and $\lim_{s} h_s(e,i) = h(e,i)$ exists.

Proof. By induction on $j = \langle e, i \rangle$. Suppose there exists a stage s_0 such that for all $\hat{e}, \hat{i} < j$:

- 1) N_e is met and never acts after stage s_0 , $\lim_s \xi_s(\hat{e}, \hat{i}) = \xi(\hat{e}, i)$ exists and is attained by stage s_0 .
- 2) $R_{\langle \hat{e}, \hat{i} \rangle}$ is met and never acts after stage s_0 , $\lim_s \lambda(\hat{e}, \xi_s(\hat{e}, \hat{i}), s)$ exists and is attained by stage s_0 .
- 3) $P_{\langle e,i\rangle}$ is met and never acts after stage s_0 , $\lim_s h_s(e,i) = h(e,i)$ exists and is attained by stage s_0 .

If 1), 2), 3) take place, then

(1) If N_j ever receives attention after stage s_0 , then (applying Part A $Case\ I$) it is met and never injured, so there is a stage $s_1 > s_0$, after which its computation does not change from divergent to convergent, and after which N_j does not receive attention. (Else set $s_1 = s_0$.)

 $\xi_{s+1}(e,i) = \xi(e,i)$ as N_0, \dots, N_i never again change ξ .

(2) After $s_2 \ge s_1$ when

$$\begin{split} W_{e,s_2} \upharpoonright & \xi(e,i) + 1 = W_e \upharpoonright \xi(e,i) + 1 \text{ , then } R_{\langle e,i\rangle} \text{ acts at most twice (probably applying Part A } Case 2(a), \text{Part A } Case 2(b)) \text{ and is met, say by stage } s_3 > s_2 \text{ . After stage } s_2 \enspace R_{\langle e,i\rangle} \text{ can move } \lambda(e,\xi(e,i),s) \text{ at most once. Also, for all} \end{split}$$

 $\hat{i} \ge i+1$, $R_{(e,i)}$ can move $\lambda(e,\xi(e,\hat{i}),s)$ at most twice.

Therefore, $\lambda(e, \xi_{s_3}(e,i), s_3) = \lim_s \lambda(e, \xi_s(e,i), s)$.

(3) If P_j ever receives attention after stage s_3 , then it is met and is satisfied forever.

If P_j is satisfied, it doesn't move $h_{s_3}(e,i)$. So $h_{s_s}(e,i) = \lim_s h_s(e,i) = h(e,i) .$

Then (ψ_i) is total &

$$(\forall u)(\forall v)[u \neq v \Rightarrow D_{\psi_i(u)} \cap D_{\psi_i(v)} = \varnothing]) \Rightarrow$$

$$(\exists s > s_3)(\exists m)[\psi_{i,s}(m) \downarrow \& (\forall z)(z \in D_{\psi_{i,s}(m)}) \Rightarrow$$

$$z \ge pr(M_e^0)h_s(e,i)$$
]. So, if (ψ_i) is total &

$$(\forall u)(\forall v)[u \neq v \Rightarrow D_{\psi_{\bullet}(u)} \cap D_{\psi_{\bullet}(v)} = \emptyset])$$
, then there

exists
$$(s_4 > s_3)$$
 such that $(\exists m)[(\psi_{i.s.}(m) \downarrow \&$

$$(\forall z)[z \in D_{\psi_{i,v}(m)} \Rightarrow z \ge pr(M_e^0)(h_s(e,i))] \& D_{\psi_{i,v}(m)}$$

is included into V_{e} at the stage $\mathit{s}_{\scriptscriptstyle{4}}+1$]. So, $\mathit{P}_{\langle e,i\rangle}$ is met.

If $P_{\langle e,i\rangle}$ is met for all $i \in \omega$, then V_e is hypersimple.

Lemma 4.2. For all e, $V_e \leq_T U \oplus W_e$.

Proof. In the construction a number k enters V_e only if a number less than or equal to k enters U or enters W_e , so $V_e \leq_T U \oplus W_e$.

Lemma 4.3. For all e, P_e is satisfied, that is $W_e = \Lambda^{V_e}$. Proof. To determine whether $x \in W_e$, we need to find a stage such that $\lambda(e, x, s)$ has attained its limit. Using the oracle V_e , we determine $\lambda(e, 0), \ldots, \lambda(e, x)$ (note that

 $\lambda(e,y,s)$ changes only if a number $\leq \lambda(e,y,s)$ enters V_e). Find a stage s_x such that $V_{e,s_x} \upharpoonright \sigma_x + 1 = V_e \upharpoonright \sigma_x + 1$, where

$$\sigma_x = \max\{\lambda(e,0),\dots,\lambda(e,x)\}.$$
 Then $x \in W_e$ iff $x \in W_{e,s_x}$.

Lemma 4.4. V_e is T-mitotic, for all e.

Proof (sketch). I. Prove that $V_e^1 \leq_T V_e^0$.

We must determine (using the oracle V_e^0) whether $x \in V_e^1$ or not (for arbitrary number x).

It is obvious, that if $x \in M^0$, then $x \notin V_e^1$.

Let $x \in M^1$. There are the following cases to consider:

(a) If $x \notin M_e^1$, then find z such that

$$z = \max(\left\{y \mid x > pr(M_e^1)(y)\right\}).$$

Find a stage s_0 such that

$$V_{e,s_0}^0 {\upharpoonright} pr(M_e^0)(z) = V_e^0 {\upharpoonright} pr(M_e^0)(z)$$
 . Then

 $x \in V_e^1 \iff x \in V_{e,s_0}^1$. (In this case x can be included in V_e^1

only if $(\exists s_1 < s_0)(\exists i, m)$ such that

 $x > pr(M_e^0)(h_{s_0}(e,i))$ and x is included in V_e^1 (with

 $pr(M_e^0)(h_{s_0}(e,i))$, $pr(M_e^1)(h_{s_1}(e,i))$ and $D_{\psi_i(m)}$),

applying the Part A Case 3 at stage $s_1 + 1$).

(b) If $x \in M_e^1$, let $x = pr(M_e^1)(k)$ for some k. Find a stage s_0 such that $V_{e,s_0}^0 \upharpoonright pr(M_e^0)(k) = V_e^0 \upharpoonright pr(M_e^0)(k)$.

Then we'll show $x \in V_e^1 \iff x \in V_{e,s}^1$ (4.5)

Note, that for $x = pr(M_e^1)(k)$ (when case (b) from Lemma 4.4. I is applied), if x enters into V_e^1 at some stage t,

then a certain element from $M_e^0 \upharpoonright pr(M_e^0)(k)$ enters into set $V_e^0 \upharpoonright pr(M_e^0)(k)$ at the same stage t.

We'll consider that in details.

Note, that x can be included in V_e^1 only applying Part A Case 2(a) or Part A Case 2(b) or Part A Case 3 or Part B. We'll show, that in all these cases the statement (4.5) takes place.

To prove the statement (4.5) there are three subcases of case (b) to consider:

 (b_1) If $(\exists s_1 < s_0)$ such that x is included in V_e^1 (with some $D_{\psi_i(m)}$) at stage $s_1 + 1$, applying Part A *Case 3*, then (4.5) takes place (as in case (a) of the proof of Lemma 4.4. I.).

 (b_2) If $(\exists s_1 < s_0)$ such that x is included in V_e^1 at stage $s_1 + 1$, applying Part A Case 2(b), then $(\exists x_1 < x)$ (x_1 is included in V_e^0 at stage $s_1 + 1$) because of the construction and the definition of the function w(e,i,s) (see Definition 3.1). So (4.5) takes place.

 (b_3) If $(\exists s_1 < s_0)$ such that the number $x = pr(M_e^1)(k)$ is included in V_e^1 at stage $s_1 + 1$, applying Part B or applying Part A *Case* 2(a), then the number $pr(M_e^0)(k)$ is included in V_e^0 at stage $s_1 + 1$, as it follows from the construction. So (4.5) takes place.

Thus, $V_e^1 \leq_T V_e^0$. Therefore, $V_e \leq_T V_e^0$ (because $V_e^0 = V_e \cap M^0$). But, obviously, $V_e^0 \leq_T V_e$ and, therefore, $V_e \equiv_T V_e^0$.

II. Prove that $V_e^0 \leq_T V_e^1$.

We must determine (using the oracle V_e^1) whether $x \in V_e^0$ or not (for an arbitrary number x).

It is obvious, that if $x \in M^1$, then $x \notin V_{\alpha}^0$.

Let $x \in M^0$. There are the following cases to consider:

- (a) $x \notin M_e^0$; (b) $(\exists k)(x = pr(M_e^0)(3k))$;
- (c) $(\exists k)(x = pr(M_a^0)(3k+1) \& pr(M_a^1)(3k) \notin V_a^1);$
- (d) $(\exists k)(x = pr(M_a^0)(3k+1) \& pr(M_a^1)(3k) \in V_a^1)$.

In all these cases, it is possible to answer the question of whether x belongs to the set V_e^0 according to the methods indicated in the proof of Part I of Lemma 4.4.

REFERENCES

- R. Downey, T. Slaman, "Completely Mitotic R.E. Degrees", Ann. Pure Appl. Logic, v. 41, pp. 119-152, 1989.
- [2] E. Griffiths, "Completely Mitotic Turing Degrees, Jump Classes and Enumeration Degrees", Ph.D. Thesis, University of Wisconsin-Madison, 1998.
- [3] R. Ladner, L. Sasso, "The weak truth-table degrees of recursively enumerable sets", Arch. Math. Logik Grundlang Grundlagen der Math., v. 8, pp. 429-448, 1975.
- [4] D. Martin, "Classes of Recursively Enumerable Sets and Degrees of Unsolvability", Zeitschrift für Math. Logik und Grundlagen der Math., v. 12, pp. 295-310, 1966.
- [5] R. Soare, "Recursively Enumerable Sets and Degrees", *Springer-Verlag*, 1987.