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ABSTRACT
In this paper we prove Schauffler’s-type theorems for
new formulas of the second order logic. This work con-
tinues the results of [1, 2, 3], [4] and [5].
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1. INTRODUCTION
The Invertible algebra is an algebra with quasigroup
operations [6, 7]. Let Q be a non-empty set. We denote
the system of all binary quasigroup operations and all
binary operations defined on the set Q by ΩQ and GQ,
respectively.

The following formula of the second order logic is called
∀∃(∀)-identity ([6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18]):

∀X1, . . . , Xk∃Xk+1, . . . , Xm∀x1, . . . , xn(w1 = w2), (1)

where w1 and w2 are the terms, which consist of func-
tional variables X1, . . . , Xm and object variables x1, . . . , xn.

In [1] it is proved that in the algebra (Q, ΩQ) the fol-
lowing ∀∃(∀)-identity

∀A, B ∈ ΩQ∃C, D ∈ ΩQ∀x, y, z ∈ Q(A(B(x, y), z) =

= C(x, D(y, z))) (2)

holds if and only if the cardinality of Q is |Q| ≤ 3.

In [4], this result was modified for groupoids: it was
proved that in the algebra (Q, GQ) the following ∀∃(∀)-
identity

∀A, B ∈ GQ∃C, D ∈ GQ∀x, y, z ∈ Q(A(B(x, y), z) =

= C(x, D(y, z))) (3)

holds if and only if the cardinality of Q is |Q| = 1 or the
set Q is infinite.

In [5], a more general result was proved: in the set Q
the following second order formula

∀A, B ∈ ΩQ∃A′, B′ ∈ GQ∀x, y, z ∈ Q(A(B(x, y), z) =

= A′(x, B′(y, z))) (4)

holds if and only if the cardinality of Q is |Q| ≤ 3 or the
set Q is infinite.

The current paper generalizes the above results and con-
tinues the results of [1, 2, 3], [4] and [5]. The following
formulas (4), (5),(6),(7),(8) are called ∀∃∗(∀)-identities.
In this paper we study the sets Q, for which the ∀∃∗(∀)-
identities (5),(6),(7),(8) hold in the set Q:

∀A, B ∈ ΩQ∃A′, B′ ∈ GQ∀x, y, z ∈ Q(B′(A(x, y), z) =

= A′(x, B(y, z))), (5)

∀A, B ∈ ΩQ∃A′, B′ ∈ GQ∀x, y, z ∈ Q(A′(B(x, y), z) =

= A(x, B′(y, z))), (6)

∀A, B ∈ ΩQ∃A′, B′ ∈ GQ∀x, y, z ∈ Q(A(B′(x, y), z) =

= A′(x, B(y, z))), (7)

∀A, B ∈ ΩQ∃A′, B′ ∈ GQ∀x, y, z ∈ Q(A(B′(x, y), z) =

= B(x, A′(y, z))). (8)

We find the necessary and sufficient conditions on the
set Q, for which these ∀∃∗(∀)-identities hold in Q.

2. PRELIMINARY CONCEPTS AND RE-
SULTS

Definition 1. The operations A, B ∈ GQ are called
isotopic, if there exist permutations α, β, γ of the set Q
such that

∀x, y(A(x, y) = αB(βx, γy)). (9)
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Definition 2. If the operations A and B are isotopic,
then algebras Q(A) and Q(B) are called isotopic.

Obviously the relation of isotopy is an equivalence rela-
tion.

In [19] the following lemma is proved:

Lemma 1. If the loop L and the group G are isotopic,
then they are isomorphic.

In [20] the following fact is stated:

Lemma 2. If |Q| ≥ 5, then it is possible to define a
loop Q(L), which is not a group.

In [5] the following lemma is proved:

Lemma 3. If |Q| ≤ 3, A ∈ ΩQ and Q(+) is a cyclic
group, then A(x, y) = αx+ t+βy, where t ∈ Q and α, β
are automorphisms of the group Q(+).

3. MAIN RESULTS
Now we can formulate the main results of the current
paper.

Proposition 1. For any non-empty set Q the ∀∃∗(∀)-
identity (5) holds.

Theorem 1. In the set Q the ∀∃∗(∀)-identity (6) holds
if and only if the cardinality of Q is |Q| ≤ 3.

Theorem 2. In the set Q the ∀∃∗∀-identity (7) holds
if and only if the cardinality of Q is |Q| ≤ 3.

Theorem 3. In the set Q the ∀∃∗∀-identity (8) holds
if and only if the cardinality of Q is |Q| ≤ 3.
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