
Hyper: Distributed Cloud Processing for Large-Scale Deep
Learning Tasks

Davit Buniatyan
Snark AI, Menlo Park, CA 94025

Princeton University, Princeton, NJ 08544

e-mail: davit@snark.ai

ABSTRACT
Training and deploying deep learning models in real-
world applications require processing large amount of
data. This is a challenging task when the amount of
data grows to hundred terabyte, or even, petabyte scale.
We introduce a hybrid distributed cloud framework with
a unified view to multiple clouds and an on-premise in-
frastructure for processing tasks using both CPU and
GPU compute instances at scale. The system imple-
ments a distributed file system and failure-tolerant task
processing scheduler, independent of the language or
Deep Learning framework used. It allows to utilize un-
stable cheap resources on the cloud to significantly re-
duce costs. We demonstrate the scalability of the frame-
work on running pre-processing, distributed training,
hyperparameter search and large-scale inference tasks
utilizing 10,000 CPU cores and 300 GPU instances with
overall processing power of 2 petaflops.12

Keywords
Deep Learning, Cloud Computing, Distributed Systems

1. INTRODUCTION
Deep Learning (DL) based models have outperformed
manual feature engineered algorithms in wide range of
domains including computer vision, natural language
processing, audio processing . The amount of labelled
data required for training production ready models
achieves a terabyte scale . The unlabelled data to exe-
cute those models reaches a petabyte scale . Such com-
putational resources are on-demand available on cloud
such as Amazon Web Services (AWS), Google Cloud
Platform (GCP) or Azure.

Modern Deep Learning frameworks such as PyTorch,
Tensorflow, MXNet, Theano and Caffe are well posi-
tioned for training and deploying models on single mul-
ticore machines with multiple GPUs or TPUs. Train-
ing state-of-the-art models on terascale data often takes
weeks or months to converge. To make training faster,
DL frameworks such as PyTorch or Tensorflow recently
introduced synchronous and asynchronous distributed
training methods to achieve almost linear speed up with
respect to the number of nodes.

When the number of nodes in a distributed clus-
ter grows, problems such as provisioning, orchestrat-
1Demo available at https://lab.snark.ai
2Documentation available at https://docs.snark.ai

ing, fault-tolerance, distribution data management, task
planning and execution arises. For executing Big Data
workloads, number of widely accepted synchronous par-
allel processing systems have been introduced such as
MapReduce [2], Apache Spark and Dryad [4]. Addi-
tionally, task-parallel frameworks are getting increased
usage such as Dask [8]. They provide fine grained task
management. These frameworks are very efficient for
ETL tasks, but lack native deep learning support. Re-
cent introduction to the family is Ray, which imple-
ments dynamic task-parallel framework that is suited
for deep learning and reinforcement learning [7].

To manage High Performance Computing (HPC) work-
loads, container technology has recently become well
suite choice for packaging environment libraries [12].
Frameworks such as Kubernetes enable massive distri-
bution of stateless applications packaged in a container
on a cluster of nodes in fault-tolerant way [1]. However,
it still lacks efficient distributed data management unit,
workflow scheduling system and support for stateful ap-
plications such as model training. Packages such as
KubeFlow and Argo attempt to extend Kubernetes to
support implementation of machine learning pipelines
[3].

For data intensive workloads, variety of distributed file
storage systems have been introduced [9] such as NFS
[10] or HDFS [11]. NFS-based file systems significantly
decrease multi-read speed and lower bound the com-
pute speed. They often do not scale on multi-write sce-
narios. There is always trade-off between latency and
scalability. For web-based applications, cloud providers
offer object storage solution that has high scalability,
but suffers in low-latency memory intensive operations.

We introduce a hybrid distributed cloud framework with
unified view to multiple clouds and on-premise infras-
tructure for processing tasks. We make the following
contributions

• We design and build distributed framework that
unifies preprocessing, training, hyperparameter
search and deploying large scale applications on
the cloud.

• To achieve scalability we design and deploy dis-
tributed file system that has near-zero delay for
deep learning jobs in comparison to downloading
the data local on the machine with similiar per-
formance.

• Provide fault-tolerance with respect to computa-
tional node failures and support utilization of un-
stable cheap resources on the cloud.

CSIT Conference 2019, Yerevan, Armenia, September 23-27

49

• Abstract away cloud infrastructure setup and pro-
visioning from the user with native cloud integra-
tion.

2. COMPUTATIONAL MODEL
In this section, we discuss design decisions made for
the system and user interface to specify computation
workload.

2.1 Computational Workflows
Workflow is a directed acyclic graph consisting of Ex-
periment nodes and their dependency as edges. Single
Experiment contains multiple Tasks. Tasks within the
same experiment execute the same command with dif-
ferent arguments. Arguments can be templated for effi-
cient parameter space definitions. Each Experiment has
an associated container that is deployed on all compu-
tational workers.

Task is the execution unit, which encapsulates a pro-
cess. Each Task has assigned Node, which represents
the computation worker. Single Node might execute
multiple Tasks. The number of nodes available corre-
sponds to the number of workers inside the cluster.

2.2 Interface
Workflows are specified using code-as-infrastructure
interface defined in YAML recipes as seen in Fig. 1.
The recipe is parsed by the server and translated into
directed acyclic graph of experiments. The interface
lets users specify the environment, hardware settings,
number of workers, parameters and parameterized com-
mands. The user can interface the system through CLI
or Web UI.

experiments: # Provide list of experiments
mnist: # Name the experiment

framework: pytorch # Or specify Docker name
parameters: # Define parameters
lr:

range: 0.1-0.3
sampling: uniform

samples: 1000 # Number of samples to draw
workers: 100 # Number of workers
hardware: # Set hardware requirements

gpu: k80
command: # Command executed

- python train.py --lr {{lr}}

Figure 1: Example recipe that does hyperparameter search.
User specifies DL farmework or docker container url, defines
parameters, number of samples to be drawn from parame-
ter space, number of workers inside a cluster, the hardware
definition of the computational node and the parameterized
command. The recipe is uploaded to REST endpoint and
executed on the cloud.

2.3 Parameters
As seen in Fig. 1, user can specify the list of parameters
that can be inserted into command arguments during
execution. Parameters can be sampled from a discrete
class or continuous range. To compute parameters for
each Task, the algorithm generates Cartesian product of
all discrete parameters and samples from the set n times
with minimal repetition. n is defined to be the number
of samples from a recipe. Then, it samples n times from
each continuous parameter range and randomly matches
with discrete sampled parameters. This is necessary

to support both hyper-parameter search and inference
with grid iterators.

3. SYSTEM OVERVIEW
The system receives data, chunks it and stores in an ob-
ject storage. The recipe is submitted to deploy the deep
learning workflow on a cluster of nodes, which mount
the distributed file system.

3.1 Distributed Data Management
In order to be framework agnostic and require no fur-
ther modification of the client program, we chunk the
file system itself and store on an object storage pro-
vided by the cloud vendor (e.g. AWS S3). The system
implementation is similar to closed source ObjectiveFS
and tuned for deep learning tasks. The distributed file-
system wraps POSIX api and acts as a middle layer
with chunking, caching and state synchronization mech-
anisms across all nodes. When the program queries the
file system for a specific file, the integration layer checks
which chunk contains the file to download. On the next
query the file system can check if the existing chunk con-
tains the next required file before fetching it from the
cloud. Within program context, files that are stored
on the remote chunked object storage appear to be lo-
cal files. Any deep learning application without further
modification will take the advantage of the highly scal-
able storage.

Deep Learning frameworks such as PyTorch and Ten-
sorFlow natively support asynchronous data fetching
from the local storage to the GPU using data loaders.
Often deep learning training iteration is bounded by
the compute cycles on GPUs. If one combines the dis-
tributed remote storage and asynchronous data fetch-
ing, the training speed is almost the same as if the data
was stored locally on the machine with respect to fol-
lowing constraints.

• Network locality - We assume that computational
nodes that access the data are physically located
near object storage servers.

• Chunksize - well chosen with respect to latency to
maximize the throughput. Should be in the range
25-100MB.

The suggested file system can leverage the scalability of
the object storage and provide data access to the cluster
of nodes with almost native speed for deep learning jobs.

3.2 Cloud Infrastructure
Distributed frameworks such as Spark, provide func-
tional ecosystem for computational tasks. End-user
should only specify the program and apply on large
datasets. User is limited to only using supported li-
braries abstracted in MapReduce framework. State-of-
the-art libraries are out of reach.

Provisioning: When constraints of the system does
allow arbitrary package support, then the whole envi-
ronment and necessary packages should be transported
to the computational node. We use container technol-
ogy to bake necessary libraries. Compute nodes need to
have docker support to execute arbitrary container and

50

Figure 2: System Architecture a) Interface uploads the training data, source code and YAML recipe to the Master Node.
Source files are chunked and uploaded to Object Storage. The Recipe is parsed to create computational graph in in-memory
Key Value Storage. For each workflow, cluster is created on the cloud. Each computational node has Node Server that handles
management of the node and executing client container. b) Workflow has four main stages. Provisioning the infrastructure,
orchestrating nodes, executing tasks and monitoring workers.

Nvidia CUDA [5] libraries for processing deep learning
operations on the GPU.

Orchestration: Due to its generic feature of container
technology, the Virtual Machine (VM) images neces-
sary to run containers can be based on any Unix based
operating systems including CoreOS, Ubuntu and Cen-
tOS. VM image is built only once and stored on the
cloud. It acts as a proxy to execute custom specified
containers. The user can specify the container from
public repository. After cloud instances are provisioned,
each instance downloads client container. This mecha-
nism allows to support any framework, library or pack-
age without constraints. We also cache frequently used
containers such as Tensorflow, Pytorch, Jupyter directly
inside VM image to reduce loading time. In addition
to custom docker management, the system can offload
container orchestration to managed Kubernetes [1].

Networking: For cloud infrastructure orchestration,
we use Terraform, which provides code-as-infrastructure
language for defining cloud resources. For each job ex-
ecution, the system specifies a Virtual Private Network
with Internet Gateway. It makes cluster nodes accessi-
ble inside the network for use cases that require state
synchronization across nodes such as during distributed
training. Alternatively one can use object storage as a
parameter server to store the model without networking
setup.

3.3 Implementation
As shown in Fig. 2, the architecture of the distributed
framework consists of main components: Interface,
Master and Node. Master is responsible for receiving
the recipe of the pipeline, parsing and creating work-
flow objects including experiments and tasks. The ob-
jects are stored in-memory key-value cache Redis. As
a backup alternative, the system stores the state into
DynamoDB. Then, master starts a new workflow ser-
vice as an adjacent container to orchestrate and sched-
ule tasks. During orchestration process, each compute
worker runs node server that listens commands executed
by the workflow manager. Each node starts to pull
client specified container and mount the distributed file
system. Once the node is ready, the workflow manager
can execute client specified commands.

There are three types of logs that are collected into Elas-
tic Logstash: client application logs, CPU/GPU utiliza-
tion logs and operating system logs .

In addition to the scheduling system, we deploy our own
object storage layer for providing S3-like API to client
interface. When the data is uploaded to Minio server ,
files get chunked and stored on the distributed file sys-
tem. Celery is used for asynchronous task management.
The task management system is similar to Apache Air-
flow and other workload management systems such as
Splunk. It is different from frameworks such as Dask [8]
or Ray [7] in terms of execution granularity.

3.4 Fault tolerance
In order to optimize cloud resource allocation, cloud
vendors provide spot or preemptible instances. Those
instances are usually 2 or 3 times cheaper but can be
terminated anytime depending on the demand and the
price per hour bid. For stateful long lasting jobs cost
optimization is an attractive option, however it requires
additional compute logic implementation to recover the
state.

Since the system already provides distributed file sys-
tem backed by remote object storage and a scheduling
system, it becomes straightforward to implement fault-
tolerant system that can handle instability. When a
node fails, the task with exact command arguments gets
rescheduled on a different node. For training use case,
modern deep learning frameworks provide easy interface
to store and retrieve model state. Hence the training
can be continued without much additional code modifi-
cations.

4. EVALUATION
To evaluate the system we run pre-processing, dis-
tributed training, hyper-parameter search and large
scale inference using AWS CPU M5 family and GPU
P3 family compute instances. We use AWS S3 to store
file system chunks.

4.1 Preprocessing
To test the scalability of the system for ETL tasks,
we setup a preprocessing experiment. 100 million text
files from commoncrawl dataset are uploaded to the dis-
tributed storage. The amount of data achieves 10TB.
We specify the infrastructure to spin up 110 instances
each with 96 cpu cores. The processing script takes
100,000 text files and transforms into tfrecord files. Dur-
ing the transformation, spaCy package is used for filter-
ing, tokenizing and splitting paragraphs. We also enable
spot instances for reducing costs and testing the fault
tolerance.

51

4.2 Distributed Training
We defined a recipe for training object recognition
model YoloV3. Then, we uploaded COCO dataset [6]
to the storage. The training script reads all images
and labels from defined path. Furthermore, parame-
ters such as how many epochs, learning rate and what
input image size are parameterized in the recipe. We
also parametrize model specific parameters such as total
number of classes, confidence threshold, nms threshold
and iou threshold.

Nvidia K80 GPUs are slow for training the model. By
single line configuration change, we deployed the train-
ing on Nvidia V100 GPUs with spot enabled instances
to reduce costs. The batch size for training was ac-
cordingly modified. The cost would be $8.48/h instead
of $0.95/h, but the training is 50x faster with 6x effi-
ciency gain. We modified hyper-parameters and started
another experiment with zero effort.

4.3 Hyperparameter search
Gradient boosting machine is one of the best off-the-
shelf machine learning solvers, however training those
models can be computationally very heavy and have a
lot of parameters to tune. There are 12 parameters to
tune for the tree booster. If you try 2 choices for each
one, there will be 4096 different combinations. If each
training takes 10 mins to complete, trying out all those
4096 combinations sequentially would take 28.4 days.
Using our system, we made the experiments run in 10
minutes by linearly increasing the cluster size without
source code modification.

4.4 Large-Scale Inference
For production ready processing, we upload an Ima-
geNet dataset and split it into 300 folders. Each folder
contains 1500 images. Using Hyper interface, we easily
parallelized the inference execution of Yolo model to 300
GPU instances with overall processing of 2 petaflops.

5. CONCLUSION
Hyper provides a unified view to multiple clouds and
on-premise infrastructure without requiring a team of
DevOps engineers and saving AI/ML-Ops time. It
provides cloud cost savings and transparent compute
resource utilization tracking. Hyper Storage solution
is significantly better for data-intensive deep learning
tasks compared to cloud-native NFS-like offers and
much more cost-efficient since it backed by object stor-
age.

Hyper enables data scientists to be highly efficient
in machine learning and deep learning. It provides
a framework for running experiments, collecting logs
and comparing models including one-click Jupyter note-
books or Tensorboard graphs using Web UI or CLI.
Data scientists can plug-and-play state-of-the-art deep
learning models in Computer Vision, NLP, and other
domains to kickstart their project. They can exe-
cute large-scale distributed training or batch processing
jobs through a very simple interface without knowing
about the infrastructure and define continuous work-
flows for automatic model training, validation, bench-
marking and deployment.

Future work includes development of various Bayesian
optimization algorithms for hyper-parameter tuning of

models, seamless integration with Kubernetes and in-
teractive workflows.

REFERENCES
[1] David Bernstein. Containers and cloud: From lxc

to docker to kubernetes. IEEE Cloud Computing,
1(3):81–84, 2014.

[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113,
2008.

[3] Xinyuan Huang, Amit Kumar Saha, Debojyoti
Dutta, and Ce Gao. Kubebench: A benchmarking
platform for ml workloads. In 2018 First
International Conference on Artificial Intelligence
for Industries (AI4I), pages 73–76. IEEE, 2018.

[4] Michael Isard, Mihai Budiu, Yuan Yu, Andrew
Birrell, and Dennis Fetterly. Dryad: distributed
data-parallel programs from sequential building
blocks. In ACM SIGOPS operating systems
review, volume 41, pages 59–72. ACM, 2007.

[5] David Kirk et al. Nvidia cuda software and gpu
parallel computing architecture. In ISMM,
volume 7, pages 103–104, 2007.

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie,
James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco:
Common objects in context. In European
conference on computer vision, pages 740–755.
Springer, 2014.

[7] Philipp Moritz, Robert Nishihara, Stephanie
Wang, Alexey Tumanov, Richard Liaw, Eric
Liang, Melih Elibol, Zongheng Yang, William
Paul, Michael I Jordan, et al. Ray: A distributed
framework for emerging {AI} applications. In 13th
{USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18), pages
561–577, 2018.

[8] Matthew Rocklin. Dask: Parallel computation
with blocked algorithms and task scheduling. In
Proceedings of the 14th Python in Science
Conference, number 130-136. Citeseer, 2015.

[9] Mahadev Satyanarayanan. A survey of distributed
file systems. Annual Review of Computer Science,
4(1):73–104, 1990.

[10] Spencer Shepler, Brent Callaghan, David
Robinson, Robert Thurlow, Carl Beame, Mike
Eisler, and Dave Noveck. Network file system
(nfs) version 4 protocol. Technical report, 2003.

[11] Konstantin Shvachko, Hairong Kuang, Sanjay
Radia, Robert Chansler, et al. The hadoop
distributed file system. In MSST, volume 10,
pages 1–10, 2010.

[12] Miguel G Xavier, Marcelo V Neves, Fabio D
Rossi, Tiago C Ferreto, Timoteo Lange, and
Cesar AF De Rose. Performance evaluation of
container-based virtualization for high
performance computing environments. In 2013
21st Euromicro International Conference on
Parallel, Distributed, and Network-Based
Processing, pages 233–240. IEEE, 2013.

52

	DT.pdf (p.85-107)
	DT_Title.pdf (p.1)
	New - Copy.pdf (p.2)
	50_190603_181912_DT_FinalSubmissionCSIT2019_FINAL.pdf (p.3-6)
	53_190607_110134_DT_CSIT_2019_Accurate_Pressure_Calculation_Method.pdf (p.7-10)
	81_190731_112131_DT_CSIT2019_p2_final.pdf (p.11-14)
	82_190731_130632_DT_CSIT2019_p1_final.pdf (p.15-18)
	DT_P_Title.pdf (p.19)
	New.pdf (p.20)
	03_190326_015335_DT_petrosyan1_FINAL.pdf (p.21-23)

	ITCT.pdf (p.142-150)
	ITCT_Title.pdf (p.1)
	New.pdf (p.2)
	73_190710_184356_ITCT_CSIT_Haroutunian_FINAL.pdf (p.3-6)
	69_190628_160849_ITCT_wiretap_csit_FINAL.pdf (p.7-9)

