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ABSTRACT 
The problem of energy aware wireless accessibility from a 
collection of statically positioned sensor nodes to a given set 
of target nodes is considered. The simple plain-disc-model 
with the sensing radius 𝜌𝜌𝑠𝑠 of wireless nodes is well known. 
Constant guarantee approximation algorithm is known for 
the ideal disk model but we will continue the study of 
general model in the case with hindrances. This model is 
defined by the use of matrices of sensor-target accessibility. 
The traditional connectivity issue of WSN is out of the scope 
of current research and the focus is on coverage. We aim at 
applying the widely-decentralized time-sharing model, 
where sensors collectively share the duty of continuous 
covering of the total collection of the set of targets. That is, 
when part of the nodes may accept for a time interval the 
sleep regime, minimizing in this way the energy 
consumption. In an easy step we obtain, that the 
mathematical problems arisen are related to the well-known 
combinatorial set cover problems. Set cover is one of the 
typical NP complete problems, which means that our 
solution will likely be not exact, but – approximate, or even 
heuristic. We bring analysis of the theoretical resources 
around these postulations. An extension of Integer Linear 
Programming model is implemented and demonstrated, 
being applied on the WSN domain coverage issues. In a 
complementary manner, and for the first time, we manage 
the appearing covering structures using the terms of 
monotone Boolean functions (the main result). 
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1. INTEGER PROGRAMMING MODEL
OF THE WSN TARGET COVERAGE
PROBLEM

Several sustained fundamental models, concentrated around 
the issues of – target coverage, sensor connectivity and 
energy optimization are developed in wireless sensor 
network (WSN) research area [1]. These models, as a rule, 
use simplifications such as supposition that the WSN duty 
occurs on an ideal plain, or they suppose the simple unit disk 
model – when the radio accessibility from the sensing nodes 
is bounded by identical circles of radius 1.  
Current state of research on WSN Target Coverage includes 
a large set of publications. Our initial starting point is the 
paper [2] that brings the basic interpretation in terms of 
integer and linear programming. Of special interest are the 
results about the constant guarantee covering in the plain 
case [20], but we consider the case of general accessibility 
given by arbitrary matrices, and this model is broader than 
the ideal plain model.  
In formal level [2], we are given: 
• a set of 𝑛𝑛 sensor nodes 𝒮𝒮 = {s1, … , s𝑖𝑖 , … , s𝑛𝑛},
• a set of 𝑚𝑚 target points  ℛ = {r1, … , r𝑘𝑘 , … , r𝑚𝑚},

• sensing radius of sensors is equal to 𝜌𝜌𝑠𝑠 = 1, and
the current sensor lifetime is given by the constant parameter
𝑙𝑙𝑖𝑖, which can be normalized to the value 1.
The covering relationship between sensors and target points
depend on their geographical allocation (2-3D, landscape,
radio/sensing areas). In a simple model each sensor covers
all target points that belong to the unit disc around the sensor
location. And each target point is covered by each sensor
that belongs to the unit disc around that target, see Figure 1.
We accept condition that each sensor covers at least one of
the targets, and that each target can be covered by one of the
sensors (C1). Otherwise, we mark these points as outlier
elements and delete them from the model.

Figure 1. Two example of WSN deployments.  
Which are the typical decentralized algorithmic actions of 
sensors and targets after their deployment? It seems that it is 
enough that each target selects one sensor of its disc (sensing 
radius disc of sensors) as a covering sensor. The total set of 
selected sensors is a covering set but it can be redundant. Is 
it possible to delete the unnecessary sensors so that each 
target becomes covered by a unique sensor (C2). Figure 1(a) 
shows that for some schemes this is not the case.  
Analytical definition of the sensor–target coverage model 
can be given by the set of coordinates of these elements, as 
well as by analytical definition of radio wave parameters and 
sensing hindrances, if any. However, more simply, the task 
of reachability of target from sensors may be given with the 
help of (0,1) matrices and the corresponding bipartite graphs 
of these schemes. 
Consider the general sensor-target covering relationship 
given by the coverage matrix ℳ in Figure 2. Rows 𝑖𝑖 ∈ 1,𝑛𝑛 
of the matrix ℳ correspond to the sensing elements s𝑖𝑖 ∈ 𝒮𝒮, 
also representing subsets of the finite set of targets, ℛ, 
covered by sensors s𝑖𝑖. 
 

𝑟𝑟1 ... 𝑟𝑟𝑘𝑘 … 𝑟𝑟𝑚𝑚 
𝑠𝑠1 𝑎𝑎1,1 … 𝑎𝑎1,𝑘𝑘 … 𝑎𝑎1,𝑚𝑚 

⋮ … … … … … 
𝑠𝑠𝑖𝑖 𝑎𝑎𝑖𝑖,1 … 𝑎𝑎𝑖𝑖,𝑘𝑘 … 𝑎𝑎1,𝑚𝑚 
⋮ … … … … … 
𝑠𝑠𝑛𝑛 𝑎𝑎𝑛𝑛,1 … 𝑎𝑎𝑛𝑛,𝑘𝑘 … 𝑎𝑎𝑛𝑛,𝑚𝑚 

(1) 

Figure 2. Matrix ℳ of sensor-target covering relationship. 
In this sensor-target coverage matrix ℳ, 𝑎𝑎𝑖𝑖,𝑘𝑘 ∈ {0,1}, and 
𝑎𝑎𝑖𝑖,𝑘𝑘 = 1 if and only if the sensor s𝑖𝑖 covers the target point 
r𝑘𝑘. As we already mentioned, ℳ can’t be an arbitrary matrix 
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– its structure depends on the modelling properties –
geometry, plain model, disk model, etc.
We consider the Target-Coverage Energy-Aware model with
the following properties and requirements:
• The time-shared control mode is being applied to
sensor activities, which means that sensors may be
operational during a number of time intervals, - with the total
duration that do not exceed the time frame 𝑙𝑙𝑖𝑖. It is convenient
to normalize initial values of 𝑙𝑙𝑖𝑖 up to the 1.
• At each time point when the set of sensors that are
active – and in integration they cover the set of all target
points – we say that the set of sensors is covering. Covering
sub-sets, acting in different time frames may intersect by
some of the sensors used. If they do not intersect, then they
may last their activity full 𝑙𝑙 time duration each. The case of
intersecting sets makes it more flexible the use of total work
time 𝑙𝑙 but mathematically this is related to complex tasks,
complex algorithms and optimisation issues.
Compose subset of sensors that cover the individual target
points, t𝑘𝑘: 𝒮𝒮𝑘𝑘 = {𝑖𝑖| sensor 𝑠𝑠𝑖𝑖 covers target t𝑘𝑘} which, as we
see, is the set, coded by the 𝑘𝑘th column of matrix ℳ in
Figure 2. We suppose that the subsets 𝒮𝒮𝑘𝑘 are not empty. 𝒮𝒮𝑘𝑘 is
for one-target, 𝑠𝑠𝑘𝑘. Alternatively, we are interested in
knowing collections of subsets 𝒮𝒮, that cover collectively the
set of all-targets. Having such subset of 𝒮𝒮 and activating its
sensors we provide the target coverage service in a time
frame, that may last as long as the lifetime of individual
sensors, in this collection. Applying one or several stages of
services of this kind still it can remind additional energy of
some sensors, that is not used by the already selected and
applied subsets of 𝒮𝒮. The problem is in composing not one
but as many as possible target covering collections, and
running them in a sequential time sharing manner. In a more
realistic mode, we have to restrict the activation time of
individual collections. This splits the lifetime of an
individual sensor among the covering collections, making it
more flexible the coverage in a time-shared manner. The
traditional mathematical formulation of the considered
problems given in [2] is based on framework of Minimal Set
Cover (MSC), interpreted in terms of the Integer Programing
(IP) problem. The resulting model becomes not only integer
valued, which brings known difficulties in stage of
optimization, but it is also nonlinear, entering in this way the
domain of general Lagrangean relaxation and the related
heuristics.
We continue this research line. The first group of models
considered in this paper is related to the same well-known
combinatorial MSC problem. The second part of our models
uses the classic ILP technique, and then, the Energy
Minimized Target Coverage problem is considered in the
form of a composite MSC+ILP procedure. Used separately,
these procedures have pros and contras against the
algorithmic complexity and accuracy issues. In combination
they give more flexible toolsets to accommodate the problem
restrictions to the application needs. Additively, we will
incorporate this technique together with one more integrative
modelling element – the formalism of Monotone Boolean
Function (MBF), which will bring several sensitive and
additional benefits. Let us bring the necessary terms and
definitions.
1.1 MSC problem 
A set system, or hypergraph, consists of a finite base-set Σ 
and a collection 𝐹𝐹 of subsets of Σ (sets of vertices and edges 
of the hypergraph). Set cover is a collection 𝑓𝑓 ⊆ 𝐹𝐹, which in 
integration ⋃ σσ∈𝑓𝑓  covers the basic set Σ. Set cover 
optimization problem requires building a minimum-capacity 
(min|𝑓𝑓|) coverage. It also considers the structure of the set 

of all set covers, its description, generation, and complexity 
issues. 
Set cover appears as a data model in extremely large number 
of applications so that even being 𝑁𝑁𝑁𝑁 complete it requires to 
find ways of composing solutions to it – be it approximate, 
partial or heuristic. Back in 1974 Johnson [6] proved that the 
greedy (gradient) algorithm for this problem provides ln𝑛𝑛 
approximation, where 𝑛𝑛 is the size of the base set (this result 
is then extended by Chvatal [7] to the weighted version of 
the set cover problem). In 1975 Lovasz [8] has built a linear 
programming relaxation, which also provides the ln 𝑛𝑛 
approximation factor to MSC. 
Different types of constrained set cover problems appear in 
research domain. Call the frequency of element 𝜎𝜎 ∈ Σ the 
number of subsets containing that an element. It is known 
that the gradient algorithm gives an approximation also to 
this type of degree-weighted set cover problems [9-11].   
The WSN target coverage set cover interpretation is 
specifically related to the plane geometry in the sense that 
the appearing structures include sensor positioning, sensor 
sensing discs, the combined sensor-target Voronoi diagrams 
[12], and other geometric relations. 
1.2 Monotone Boolean functions 
“The general knowledge discovery process is not always 
easy or efficient, and even if knowledge is produced it may 
be hard to understand, interpret, validate, remember, and use. 
Monotonicity is a pervasive property in nature: it applies 
when each predictor variable has a non- negative effect on 
the phenomenon under the study. Due to the monotonicity 
property, being able to observe the phenomenon under 
specifically selected conditions may increase the accuracy 
and completeness of the knowledge at a faster rate than a 
passive observer …” [13]. Monotone Boolean functions are 
the modelling technique of set cover problems in general, 
and in WSN devoted issues, specifically. 
Let En denote the set of all binary vectors of length n. 
Let α = (α1,α2, … ,αn) and β = (β1, β2, … , β) be such 
vectors. Then, the vector α = (α1,α2, … ,αn) precedes β =
(β1,β2, … , β) (denoted as: α ≼ β) if and only if the 
following is true: αi ≼ βi, for all i ∈ 1, n. If, at the same 
time: α ≠ β, then it is said that α strictly precedes β (denoted 
as: α ≺ β).  
A Boolean function f(x) is monotone if for any vectors α, β ∈
 En, the relation f(α ) ≼ f(β ) follows from the fact that α ≼
β . Let M𝑛𝑛 be the set of all monotone Boolean functions 
defined on n variables. A binary vector of length n is said to 
be the upper zero of function f ∈ M𝑛𝑛, if f(α) = 0 and then, 
for any vector β such that α ≺ β we have f(α) = 1. In a 
similar way the lower unit of a monotone function 𝑓𝑓 can be 
determined. 
Two issues are of our interest concerning the use of MBF. 
a) Consider an arbitrary collection  Σ of subsets of the
sensor set 𝒮𝒮 = {s1, … , s𝑖𝑖 , … , s𝑛𝑛} in the following way. Σ =
{σ�1, … ,σ�𝑗𝑗 , … ,σ�𝑝𝑝}, 𝑝𝑝 ≤ 2𝑛𝑛 and it represents a subset of the
binary cube 𝐸𝐸𝑛𝑛 (power 𝑛𝑛-set). For a σ�𝑗𝑗 =
�σj,1,σj,2, … ,σj,n� ∈ 𝐸𝐸𝑛𝑛 compose the set of subsets of 𝒮𝒮
indicated by all coordinate values 1 in σ�𝑗𝑗 . Some of these sets
cover the entire set of targets, ℛ. If α causes a cover, then β,
that obey α ≼ β, is also a cover. Denote the MBF received in
this way by 𝑓𝑓Σ. Let α be a lower 1 of the 𝑓𝑓Σ. Its role is
specific in cover because of it is the minimal necessary
collection of covering sensor collections that covers the set
ℛ. The WSN coverage problem, as we see, is composed of
two layers – we choose collections of sensors in a way that
they, in integrity, cover the target domain. The covering
subsets are the same σ�𝑗𝑗  but represented not only by the
sensors that belong to the set 𝒮𝒮, but alternatively by the
subsets of target points of ℛ, that are covered by the
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elements of σ�𝑗𝑗 . MBF, corresponding to this structure, we 
may denote by the same symbol 𝑓𝑓Σ. 
b) Given the matrix (1), procedure of constructing of
function 𝑓𝑓Σ asks for several steps. At first, it is to determine
the proper set Σ of initial sensor cover subsets. One may
want to choose all subsets, coded by lower units of 𝑓𝑓Σ. There
are 2 ways of achieving this goal: constructing the whole  𝑓𝑓Σ
which is time and memory consuming for large networks,
and, alternatively, a direct or approximate construction and
reinforcement of the proper collections of subsets. These
algorithms are known as query-based MBF reconstructing
algorithms, they are hard and they are studied intensively
and broadly [13]. Korobkov V. [15] described the basic
relations among the set of all monotone Boolean functions.
Korshunov A. [16] derived the asymptotic formula for the
number of 𝑛𝑛-dimensional MBF. Hansel G. [17] invented the
famous chain split of 𝐸𝐸𝑛𝑛 proving the exact lower bound
complexity of the MBF reconstructing. Tonoyan G. [18] was
the first describing an effective algebra for computations
over the Hansel’s chains. Afterward Sokolov D. [19]
simplified the chain split so that the computation algebra
itself became more transparent. Other related works can be
found at [14].

Figure 3. Power set with all set covers in accord with the 
matrix of Figure 2. The bottom point represents the empty 
set of sensors. “0’s of column 𝑖𝑖” means the sensor subset that 
includes all sensors, marked by 0 in column 1 of matrix in 
Figure 2. This point, and all vertices below it can’t be a 
covering set. DNF is disjunction of all these subcubes. Any 
point above the DNF is a covering set. Negation of DNF 
corresponds to monotone Boolean function (MBF) 
describing the set of all covering sets and “min cover” is one 
of the lower 1’s of this function.  
The MBF reconstructing technique may help with the direct 
search of the lower units of function 𝑓𝑓Σ. The working schema 
supposes, that there exists an oracle ΩΣ that knows the 
function 𝑓𝑓Σ. With the help of a certain number of accesses to 
the oracle, and using the Hansel’s chain split technique and 
its extensions, several procedures might be devised and 
applied in determination of several or all lower units of 
MBF. 
Fundamentals of the MBF reconstructing algorithms 
developed in [15, 17-20] introduce us the following lessons. 
There exists an incredible chain-split of 𝐸𝐸𝑛𝑛 with the very 
basic property of relative completion. Chains are 
symmetrically positioned against the layers of the cube  𝐸𝐸𝑛𝑛. 
Reconstructing algorithms of [15, 17-20] essentially use the 
chain-split construction.  
1.3 General terms 
Consuming the given short description above, let us 
formulate the postulations directly in terms of the WSN 
energy minimization target-coverage model. Consider the 
time-sharing table with the target covers σ�1, … ,σ�𝑖𝑖 , … ,σ�𝑝𝑝: 

𝜎𝜎�1 ... 𝜎𝜎�𝑗𝑗  … 𝜎𝜎�𝑝𝑝 
𝑥𝑥1,1 … 𝑥𝑥1,𝑗𝑗 … 𝑥𝑥1,𝑝𝑝 𝑠𝑠1 

… … … … … ⋮ 
𝑥𝑥𝑖𝑖,1 … 𝑥𝑥𝑖𝑖,𝑗𝑗  … 𝑥𝑥𝑖𝑖,𝑝𝑝 𝑠𝑠𝑖𝑖 

… … … … … ⋮ 
𝑥𝑥𝑛𝑛,1 … 𝑥𝑥𝑛𝑛,𝑗𝑗  … 𝑥𝑥𝑛𝑛,𝑝𝑝 𝑠𝑠𝑛𝑛 
𝑙𝑙1  𝑙𝑙2  𝑙𝑙𝑝𝑝 

(2) 

Figure 4. The time sharing table of target covers. 

Here 𝑙𝑙1, … , 𝑙𝑙𝑗𝑗 , … , 𝑙𝑙𝑝𝑝 define the time duration of active regime 
of subsets 𝜎𝜎�𝑗𝑗 . 𝑥𝑥𝑖𝑖,𝑗𝑗  are indicators, binary variables, of 
involvement of sensors 𝑠𝑠𝑖𝑖 into the cover-subsets 𝜎𝜎�𝑗𝑗 . 
Theorem In target-coverage Figure 4., any replacement of 
sensor-covers 𝜎𝜎�𝑗𝑗  by lower units of fΣ (these are parts of 
covers 𝜎𝜎�𝑗𝑗) will draw to solution enhancement, minimizing 
energy consumption and maximizing the life time of the 
system. 
This postulation is not about an obligatory enhancement, 
because of the sparing energy depending on (1) and (2), in 
principle, may be unable to extend an additional time frame 
for covering all targets. Henceforth, the note is about the 
exceptional and unique cases. But in general, this change 
saves energy that potentially and in a proper management, 
may frequently help to approach the optimal functionality.  
1.4 ILP problem 
One convenient interpretation of combinatorial set cover 
problem is through the Integer Linear Programming model. 
Large combinatorial optimization problems are often 
formulated in terms of mathematical programming, which is 
not necessarily linear. Further relaxation in some cases 
reduces these problems to the Linear or Integer Linear 
programming models. Other possible heuristics include 
random search procedures, sub-gradient optimization and 
other computational techniques. ILP is one of the basic NP-
complete problems. A large number of combinatorial 
problems have their polynomial reductions to ILP. Having 
this knowledge on MSC and ILP, we want to develop 
appropriate approximation models and algorithms for WSN 
domain. In fact, first we model the MSC problem as an 
Integer Programming and then we use the relaxation 
technique to design a Linear Programming-based model to 
solve the MSC.  

Integer Programming Formulation of the MSC Problem 
Following [2] let us set a threshold 𝑝𝑝 for the total number of 
the set-covers used in the model. We formulate the MSC 
problem as follows: introduce matrix 𝑋𝑋, whch presents the 𝑝𝑝 
number of used subsets of sensors. 𝑙𝑙1, … , 𝑙𝑙𝑗𝑗 , … , 𝑙𝑙𝑝𝑝 define the 
time duration when the subset 𝒮𝒮𝑗𝑗  of sensors is active. We 
present all this information together in the table form 
(1)+(2). 
Variables: 𝑎𝑎𝑖𝑖,𝑘𝑘 are binary constants characterizing sensor-
target coverage relations, 𝑥𝑥𝑖𝑖,𝑗𝑗  are Boolean variables, for 𝑖𝑖 =
1,𝑛𝑛�����  and  𝑗𝑗 = 1,𝑝𝑝�����;  𝑥𝑥𝑖𝑖,𝑗𝑗 = 1 if sensor 𝑠𝑠𝑖𝑖 is a member of the 
target covering set 𝜎𝜎�𝑗𝑗 , otherwise 𝑥𝑥𝑖𝑖,𝑗𝑗 = 0, 𝑙𝑙𝑗𝑗 are nonnegative 
reals, 0 ≤ 𝑙𝑙𝑗𝑗 ≤ 1 for 𝑗𝑗 = 1,𝑝𝑝����� representing the time allocated 
for the target cover 𝜎𝜎�𝑗𝑗 . 
The optimization problem about the sensor cover of targets 
can be written as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑙𝑙1 + ⋯+ 𝑙𝑙 + ⋯+ 𝑙𝑙𝑝𝑝 

subject to �𝑥𝑥𝑖𝑖,𝑗𝑗𝑙𝑙𝑗𝑗 ≤ 1
𝑝𝑝

𝑗𝑗=1

  for all s𝑖𝑖 ∈ 𝒮𝒮 
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�𝑎𝑎𝑖𝑖,𝑘𝑘𝑥𝑥𝑖𝑖,𝑗𝑗 ≥ 1
𝑛𝑛

𝑖𝑖=1

 for all  𝑘𝑘 = 1,𝑚𝑚������, and 𝑗𝑗 = 1,𝑝𝑝����� (4) 

Remarks: 
• the first constraint, ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑙𝑙𝑗𝑗 ≤ 1𝑝𝑝

𝑗𝑗=1  for all s𝑖𝑖 ∈ 𝒮𝒮
guarantees that the time allocated for each sensor s𝑖𝑖, across
all 𝑝𝑝 target covers, is not larger than 1, which is the life time
of each sensor.
• the second constraint, ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗 ≥ 1𝑖𝑖∈𝑆𝑆𝑘𝑘  for all r𝑘𝑘 ∈ ℛ,
𝒮𝒮𝑘𝑘 = {𝑖𝑖| sensor 𝑠𝑠𝑖𝑖 covers target r𝑘𝑘}, and 𝑗𝑗 = 1,𝑝𝑝����� guarantees 
that each target r𝑘𝑘 is covered by at least one sensor  s𝑖𝑖 in 
each target cover 𝜎𝜎�𝑗𝑗 . 
We observe that the term 𝑥𝑥𝑖𝑖,𝑗𝑗𝑙𝑙𝑗𝑗  is not linear so that (4) is not 
a linear program (LP). Even if all 𝑙𝑙𝑗𝑗 are equal, and constant, 
𝑥𝑥𝑖𝑖,𝑗𝑗  are Boolean so the reduced (4) remains an ILP.  

2. WSN TARGET COVERAGE
TECHNIQUE AND SOLUTIONS
2.1 LP-MSC-1 Heuristic
Transform the model (4) into an LP [2] and further apply the 
relaxation technique: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑙𝑙1 + ⋯+ 𝑙𝑙𝑗𝑗 + ⋯+ 𝑙𝑙𝑝𝑝 

subject to �𝑦𝑦𝑖𝑖,𝑗𝑗 ≤ 1
𝑝𝑝

𝑗𝑗=1

  for all s𝑖𝑖 ∈ 𝒮𝒮

�𝑎𝑎𝑖𝑖,𝑘𝑘𝑦𝑦𝑖𝑖,𝑗𝑗 ≥ 𝑙𝑙𝑗𝑗

𝑛𝑛

𝑖𝑖=1

for all r𝑘𝑘 ∈ ℛ, and 𝑗𝑗 = 1,𝑝𝑝�����

(5) 

where 0 ≤ 𝑦𝑦𝑖𝑖,𝑗𝑗 ≤ 𝑙𝑙𝑗𝑗 ≤ 1. 

LP-MSC-1 Heuristic (integer nonlinear programming + 
Lagrangean relaxation + combinatorial approximation and 
iterations): 
Step 1. Initialization Solve the linear programming LP (5) 
formulated above. Let �𝑦𝑦𝑖𝑖,𝑗𝑗∗ , 𝑙𝑙𝑗𝑗∗�, 𝑖𝑖 = 1,𝑛𝑛�����, 𝑗𝑗 = 1,𝑝𝑝����� be the 
optimal solution of LP. Set the network lifetime 𝐺𝐺 =  0. 
Note that all 𝜎𝜎�𝑗𝑗  obtained in this way are valid target covers. 
If to suppose that 𝑙𝑙𝑗𝑗 are even some very small nonzero values 
then evidently the values 𝑦𝑦𝑖𝑖,𝑗𝑗 satisfying (5), to its second 
constraint, generate a target cover 𝜎𝜎�𝑗𝑗 . 𝜎𝜎�𝑗𝑗  can be further 
optimized by deletion of unnecessary sensor elements from 
it. After that, intuitively, the problem is to construct a table 
𝑦𝑦𝑖𝑖,𝑗𝑗 with more or less equal number of nonzero entities. The 
ideal matrix will be the one with columns corresponding the 
minimal “ones” of the covering monotone Boolean function, 
and regular in rows – that is, having the same row weight. 
There are two ways to obtain this. One is the hard way of 
constructing all minimal “ones” of MBF with further 
selection of a subset of minimal ones with almost regular 
rows. The second way may construct a large set of target 
covers by LP (5), considering then its intersection with a 
properly selected layer of 𝑛𝑛-cube (or a direct random 
selection on the 𝑛𝑛-cube layer). Intersection provides an equal 
number of sensors at this stage. The overhead is due to 
presence of additional sensors that may be eliminated, and 
this will move the element to a lower layer increasing in this 
way the potential life time of the system. Anyway, it is an 
important remark, that the LP (5), in polynomial time, solved 
for a large parameter 𝑝𝑝, can give as a large set of covering 
sensor collections as the basis of further optimization of their 
time intervals.  
Step 2. Fitting The initial approximate solution can be 
obtained in the form of the set �𝑦𝑦𝑖𝑖,𝑗𝑗∗ , 𝑙𝑙𝑗𝑗∗�, 𝑖𝑖 = 1,𝑛𝑛�����, 𝑗𝑗 = 1,𝑝𝑝����� as 
follows: 

for all 𝑗𝑗 = 1, 𝑝𝑝����� do 

/* this cycle considers each target cover 𝜎𝜎�𝑗𝑗  */ 
set 𝒚𝒚𝒊𝒊,𝒋𝒋𝟎𝟎 = 𝟎𝟎  

/* in the cover 𝜎𝜎�𝑗𝑗  for all sensors s𝑖𝑖 ∈ 𝒮𝒮 */ 
set 𝒍𝒍𝒋𝒋𝟎𝟎 = 𝟎𝟎 
for all 𝑘𝑘 = 1,𝑚𝑚������ do 

𝑖𝑖𝑗𝑗𝑗𝑗∧ ∈ 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑖𝑖∈𝒮𝒮𝑘𝑘

𝑦𝑦𝑖𝑖,𝑗𝑗∗      

/* for current target cover 𝜎𝜎�𝑗𝑗  and all target 𝑟𝑟𝑘𝑘 ∈ ℛ */ 
set 𝑦𝑦𝑖𝑖𝑗𝑗𝑗𝑗∧ ,𝑗𝑗

0 = 𝑦𝑦𝑖𝑖𝑗𝑗𝑗𝑗⋁ ,𝑗𝑗
∗

end for 
𝑖𝑖𝑗𝑗∨ ∈ 𝑎𝑎𝑎𝑎𝑎𝑎min

𝑘𝑘
𝑖𝑖𝑗𝑗𝑗𝑗∧  

set 𝑙𝑙𝑗𝑗0 = 𝑦𝑦𝑖𝑖𝑗𝑗𝑗𝑗⋁ ,𝑗𝑗
0

end for 
This step selects the best possible durations 𝑙𝑙𝑗𝑗0 of covers 𝜎𝜎�𝑗𝑗  
by the current solution of (5), 𝑙𝑙𝑗𝑗0 = min

𝑘𝑘
max
𝑖𝑖∈𝒮𝒮𝑘𝑘

𝑦𝑦𝑖𝑖,𝑗𝑗∗  and 𝑦𝑦𝑖𝑖,𝑗𝑗0  be 

set equal to 0 or 𝑙𝑙𝑗𝑗0 such that for every 𝑟𝑟𝑘𝑘, there exists an 𝑖𝑖 ∈
𝒮𝒮𝑘𝑘 such that 𝑦𝑦𝑖𝑖,𝑗𝑗0 = 𝑙𝑙𝑗𝑗0. Denote 𝜌𝜌 = max

𝑟𝑟𝑘𝑘∈𝑅𝑅
|𝒮𝒮𝑘𝑘|. Then, 𝑙𝑙𝑗𝑗∗ ≤

∑ 𝑦𝑦𝑖𝑖,𝑗𝑗∗𝑖𝑖∈𝒮𝒮𝑘𝑘 ≤ 𝜌𝜌max
𝑖𝑖∈𝑆𝑆𝑘𝑘

𝑦𝑦𝑖𝑖,𝑗𝑗∗ , for all 𝑟𝑟𝑘𝑘 ∈ 𝑅𝑅, therefor, 𝑙𝑙𝑗𝑗∗ ≤

𝜌𝜌min
𝑟𝑟𝑘𝑘∈𝑅𝑅

max
𝑖𝑖∈𝒮𝒮𝑘𝑘

𝑦𝑦𝑖𝑖,𝑗𝑗∗ = 𝜌𝜌𝑙𝑙𝑗𝑗0. Due to relaxation used in (5), the real 

optimal solution 𝑙𝑙𝑗𝑗
0 obeys relation 𝑙𝑙𝑗𝑗

0  ≤ 𝑙𝑙𝑗𝑗∗ so that 𝑙𝑙𝑗𝑗0 ≥ 1/𝜌𝜌 ∙

𝑙𝑙𝑗𝑗
0 . Hence, ∑ 𝑙𝑙𝑗𝑗0

𝑝𝑝
𝑗𝑗=1 ≥ 1/𝜌𝜌 ∙ ∑ 𝑙𝑙𝑗𝑗

0 𝑝𝑝
𝑗𝑗=1 .

After the first approximation: 
• each sensor 𝑠𝑠𝑖𝑖, 𝑖𝑖 = 1,𝑛𝑛�����, has a remaining life time
𝑙𝑙𝑖𝑖 = 1 −∑ 𝑦𝑦𝑖𝑖,𝑗𝑗0𝑗𝑗
• network lifetime 𝐺𝐺 = 𝐺𝐺 + ∑ 𝑦𝑦𝑖𝑖,𝑗𝑗0𝑗𝑗 . 
Step 3. Iterations We iteratively repeat Step 1 and Step 2 by 
solving the updated linear program (5), in order to improve 
the current network lifetime G. The iteration is executed 
while each target is covered by at least one sensor having the 
remaining lifetime greater than 0. 
Finally, at this step, the LP-MSC-1 heuristic returns the 
network lifetime approximation G. 
2.2 LP-MSC-2 Heuristic 
Starting from this point of the work we form a different than 
the LP-MSC-1 Heuristic [2], based on analysis of the 
combinatorial algorithms considered above. The basic idea is 
in how to increase and properly use the value min

𝑘𝑘
max
𝑖𝑖∈𝒮𝒮𝑘𝑘

𝑦𝑦𝑖𝑖,𝑗𝑗. 

In one case we insert a new parameter 𝜀𝜀, and consider an LP 
of maximizing this parameter: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜀𝜀

subject to �𝑦𝑦𝑖𝑖,𝑗𝑗 ≤ 1
𝑝𝑝

𝑗𝑗=1

  for all s𝑖𝑖 ∈ 𝒮𝒮

�𝑎𝑎𝑖𝑖,𝑘𝑘𝑦𝑦𝑖𝑖,𝑗𝑗 ≥ 𝜀𝜀
𝑛𝑛

𝑖𝑖=1

 for all r𝑘𝑘 ∈ ℛ, and 𝑗𝑗 = 1, 𝑝𝑝�����

(6) 

where 0 ≤ 𝑦𝑦𝑖𝑖,𝑗𝑗 ≤ 1. 
LP-MSC-2 Heuristic (LP + Step 2. of LP-MSC-1 + 
iterative LP + combinatorial approximation): 

The new LP-MSC-2 Heuristic solves the LP (8) 
first, and then it applies Step 2. described above. The optimal 
solution obtained in this way evidently equals to 𝑝𝑝𝑝𝑝. And, if 
after the optimization still some time duration remains in 
sensors, a step similar to Step 3. may be applied to refine the 
final solution. The idea of LP-MSC-2 is to directly address 
the narrower point of the model – the requirement to provide 
a maximal value to the forms min

𝑘𝑘
max
𝑖𝑖∈𝒮𝒮𝑘𝑘

𝑦𝑦𝑖𝑖,𝑗𝑗. Here 𝑦𝑦𝑖𝑖,𝑗𝑗 is 

directly the activation time duration of the sensor 𝑖𝑖 in 
coverage 𝑗𝑗. We lose when several sensors covering the same 
target have to be active in a time being. In this case only a 
part of the 𝜀𝜀 will be transferred into the coverage duration. 
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Simulation results will compare the considered heuristics 
LP-MSC-1 and LP-MSC-2. 
The Result of the paper. Finally, let us describe the basic 
heuristic approaches, developed in this paper, LP-MBF-3. 
LP-MBF-3 is based on the better use of the Lagrangean 
relaxation model given above, and on use of error correcting 
codes and the monotone Boolean functions. In the first stage, 
let us a consider a procedure of a general purpose. Let in 
some heuristics an approximate solution of the problem be 
found in terms of the pairs (𝑥𝑥𝑖𝑖,𝑗𝑗 , 𝑙𝑙𝑗𝑗). Columns 𝑥𝑥𝑗𝑗 present 
covering subsets of sensors. Durations 𝑙𝑙𝑗𝑗 are found 
iteratively, which can be not the best choice, and the 
covering subsets might be not optimal (deadlock).  
2.3 LP-MSC-3 Procedure 
Here the following strategy might be of interest. At the first 
stage, let us minimize the covering subsets by consecutive 
steps of deletion of unnecessary sensors, if there are any. 
This can be done under different strategies, but we will not 
consider the issue in detail here due to room restrictions. At 
the second stage, when we have an optimized covering 
collection in the form of a matrix consisting of values 𝑥𝑥𝑖𝑖,𝑗𝑗  we 
apply again the linear programming. Here, as the second 
constraint of (4) is satisfied, it remains to solve the simplest 
LP with given (constant 𝑥𝑥𝑖𝑖,𝑗𝑗), targeting to maximize the sum 
𝑙𝑙1 + ⋯+ 𝑙𝑙𝑗𝑗 + ⋯+ 𝑙𝑙𝑝𝑝, and having to obey only the first 
constraint of (4). The exact solution of this formulation 
might exceed the step by step optimization result. Besides, 
this procedure is applicable to covering matrices 𝑥𝑥𝑖𝑖,𝑗𝑗 that are 
constructed in any way, be it combinatorial, random, LP or 
other. 
2.4 LP-MBF-3 Heuristic 
Let us describe schematically the general structure of this 
approach, which is complicated in its nature. The idea is to 
construct sets of covering subsets and then apply a regular 
LP to determine the weights of covers - time intervals of 
covering set activities. Unlike the previous models, here the 
covering sets are searched for by combinatorial algorithms. 
Evenly sparsely distributed collections of Hansel chains are 
constructed and on these chains the lower covers are 
determined. Here the series of chain dichotomies and checks 
for covering are used (see the point 1.2). Further, as already 
mentioned in LP-MSC-2, weights of sets are determined by 
the use of ordinary linear programming algorithms.  
An additional comment is required concerning the sizes of 
the covering subsets that appear in the model. This number is 
comparable to the number of target points and cannot be 
sharply higher than this. In terms of 𝑛𝑛-cube we seek for 
vertices that belong to the lower layers of 𝐸𝐸𝑛𝑛. This 
information is to be correlated to the chain collection 
procedure. Chains can be composed using constant-weight 
codes, randomly, or in some other ways.  

3. CONCLUSION
WSN Target Coverage is a spatial-temporal type problem, 
mostly considered in 2-3D cases. For ideal problems, where 
there are no hindering elements to the radio penetration, a 
constant factor solution to this problem is known. The 
general form problem is given with the help of (0,1) 
accessibility matrices, so the problem remains complex. 
Additionally, to LP models and approximations, which are 
well known, this paper considers innovative mechanisms 
based on monotone Boolean functions and the corresponding 
approximations are presented in tight integration with those 
achieved through mathematical and especially the integer 
linear programing formalisms. 
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