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ABSTRACT
Y. Manoussakis (J. Graph Theory 16, 1992, 51-59) pro-
posed the following conjecture.
Conjecture. Let D be a 2-strongly connected digraph
of order n such that for all distinct pairs of non-adjacent
vertices x, y and w, z, we have d(x) + d(y) + d(w) +
d(z) ≥ 4n− 3. Then D is Hamiltonian.
In this paper, we confirm this conjecture. Moreover, we
prove that if a digraph D satisfies the conditions of this
conjecture and has a pair of non-adjacent vertices {x, y}
such that d(x) + d(y) ≤ 2n− 4, then D contains cycles
of all lengths 3, 4, . . . , n.

Keywords
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1. INTRODUCTION
In this paper, we consider finite digraphs (directed gra-
phs) without loops and multiple arcs. Every cycle and
path are assumed simple and directed; their lengths are
the numbers of their arcs. A digraph D is Hamiltonian
if it contains a cycle passing through all the vertices of
D. There are many conditions that guarantee that a
digraph is Hamiltonian (see, e.g., [1]-[5]). In [5], the
following theorem was proved.

Theorem 1.1: (Manoussakis [5]). Let D be a strong
digraph of order n ≥ 4. Suppose that D satisfies the
following condition for every triple x, y, z ∈ V (D) such
that x and y are non-adjacent: If there is no arc from x
to z, then d(x)+d(y)+d+(x)+d−(z) ≥ 3n−2. If there
is no arc from z to x, then d(x)+d(y)+d−(x)+d+(z) ≥
3n− 2. Then D is Hamiltonian.

Definition 1.2: Let D be a digraph of order n. We
say that D satisfies condition (M) when d(x) + d(y) +
d(w)+d(z) ≥ 4n−3 for all distinct pairs of non-adjacent
vertices x, y and w, z.

Manoussakis [5] proposed the following conjecture. This
conjecture is an extension of Theorem 1.1

Conjecture 1.3: (Manoussakis [5]). Let G be a 2-
strong digraph of order n such that for all distinct pairs
of non-adjacent vertices x, y and w, z we have d(x) +
d(y) + d(w) + d(z) ≥ 4n− 3. Then D is Hamiltonian.

Manoussakis [5] gave an example, which showed that if

this conjecture is true, then the minimum degree con-
dition is sharp. Notice that another examples can be
found in [6], where for any two integers k ≥ 2 and
m ≥ 1, the author constructed a family of k-strong di-
graphs of order 4k+m with minimum degree 4k+m−1,
which are not Hamiltonian. This result disproves a con-
jecture of Thomassen (see [2], Conjecture 1.4.1. Every
2-strong (n − 1)-regular digraph of order n, except D5

and D7, is Hamiltonian).

Thomassen (see [2]) suggested the following conjectures:

1. (Conjecture 1.6.7 Thomassen [2]): Every 3-strong
digraph of order n and with minimum degree is at least
n + 1 is strongly Hamiltonian-connected.

2. (Conjecture 1.6.8 Thomassen [2]): Let D be a 4-
strong digraph of order n such that the sum of the de-
grees of any pair of non-adjacent vertices is at least
2n + 1. Then D is strongly Hamiltonian-connected.

Investigating these conjectures, the author [7] disproved
the first conjecture (proving that for every integer n ≥ 9
there exists a 3-strong non-strongly Hamiltonian-conne-
cted digraph of order n with the minimum degree at
least (n + 1), and for the second conjecture proved the
following theorem.

Theorem 1.4: (Darbinyan [7]). Let D be a strong di-
graph of order n ≥ 3. Suppose that d(x)+d(y) ≥ 2n−1
for every pair of non-adjacent vertices x, y ∈ V (D)\{z},
where z is some vertex of V (D). Then D contains a cy-
cle of length at least n− 1.

The following corollary immediately follows from The-
orem 1.4.

Corollary 1.5: Let D be a strong digraph of order n
satisfying condition (M). Then D contains a cycle of
length at least n−1 (in particular, D contains a Hamil-
tonian path).

In [8], [9] and [10] the authors studied some properties in
digraphs with the conditions of Theorem 1.1. The result
of [9] gives an answer to a question of Li, Flandrin and
Shu [11].

In this paper, we confirm Conjecture 1.3.

Theorem 1.6. Let D be a 2-strong digraph of order n ≥
3 satisfying condition (M). Then D is Hamiltonian.
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We also prove the following theorem.

Theorem 1.7. Let D be a 2-strong digraph of order n ≥
3 satisfying condition (M). Suppose that D contains
a pair {x, y} of non-adjacent vertices such that d(x) +
d(y) ≤ 2n − 4. Then D contains cycles of all lengths
3, 4, . . . , n.

Note that Woodall’s and Ore’s theorems follow from
Theorem 1.6.

The proof of Theorem 1.7 is based on Theorem 3.4 and
the Moser theorem for a strong tournament to be pan-
cyclic [14].

In view of Theorem 1.7, we set the following problem.

Problem: Let D be a 2-strongly connected digraph of
order n satisfying condition (M). Suppose that {x, y} is
a pair of non-adjacent vertices in D such that 2n− 3 ≤
d(x) + d(y) ≤ 2n− 2. Whether D contains cycles of all
lengths 3, 4, . . . , n− 1?

2. TERMINOLOGY AND NOTATION
In this paper we consider finite digraphs without loops
and multiple arcs. We shall assume that the reader is
familiar with the standard terminology on digraphs and
refer to [1] for terminology and notations not discussed
here. The vertex set and the arc set of a digraph D are
denoted by V (D) and A(D), respectively. The order of
D is the number of its vertices.

The path (respectively, the cycle) consisting of the dis-
tinct vertices x1, x2, . . . , xm ( m ≥ 2) and the arcs
xixi+1, i ∈ [1,m − 1] (respectively, xixi+1, i ∈ [1,m −
1], and xmx1), is denoted by x1x2 · · ·xm (respectively,
x1x2 · · ·xmx1). Let x and y be two distinct vertices of
a digraph D. Cycle that passing through x and y in D,
we denote by C(x, y).

A digraph D is strongly connected (or just strong), if
there exists a path from x to y and a path from y to x
for every pair of distinct vertices x, y. A digraph D is
k-strongly (k ≥ 1) connected (or k-strong), if |V (D)| ≥
k + 1 and D〈V (D) \ A〉 is strongly connected for any
subset A ⊂ V (D) of at most k − 1 vertices.

3. AUXILIARY KNOWN RESULTS
It is not difficult to prove the following lemma.

Lemma 3.1. Let D be a digraph of order n. Assume
that xy /∈ A(D) and the vertices x, y in D satisfy the
degree condition d+(x)+d−(y) ≥ n−2+k, where k ≥ 1.
Then D contains at least k internally disjoint (x, y)-
paths of length two.

Theorem 3.2 (Meyniel [4]). Let D be a strong digraph
of order n ≥ 2. If d(x) + d(y) ≥ 2n− 1 for all pairs of
non-adjacent vertices in D, then D is Hamiltonian.

Definition 3.3. For any integers n and m, (n+1)/2 <
m ≤ n− 1, let Φm

n denote the set of digraphs D, which
satisfy the following conditions: (i) V (D) =
{x1, x2, . . . , xn}; (ii) xnxn−1 . . . x2x1xn is a Hamilto-
nian cycle in D; (iii) for each k, 1 ≤ k ≤ n−m+1, the
vertices xk and xk+m−1 are not adjacent; (iv) xjxi /∈
A(D) whenever 2 ≤ i + 1 < j ≤ n and (v) the sum of

degrees for any two distinct non-adjacent vertices is at
least 2n− 1.

Theorem 3.4 (Darbinyan [14]). Let D be a strong di-
graph of order n ≥ 3. Suppose that d(x)+d(y) ≥ 2n−1
for all pairs of distinct non-adjacent vertices x, y in D.
Then either (a) D is pancyclic or (b) n is even and D
is isomorphic to one of K∗n/2,n/2, K∗n/2,n/2 \ {e}, where

e is an arbitrary arc of K∗n/2,n/2, or (c) D ∈ Φm
n (in

this case D does not contain a cycle of length m).

Later on, Theorem 3.4 was also proved by Benhocine
[15].

4. PRELIMINARIES
A preliminary version of some results of this section was
presented at Emil Artin International Conference [16]
and recently published in [17]. We will omit all proofs
of lemmas and theorems in this section.

Lemma 4.1: Let D be a digraph of order n satisfying
condition (M). Then D contains at most one pair of
non-adjacent vertices x, y such that d(x)+d(y) ≤ 2n−2.

Theorem 4.2: Let D be a 2-strong digraph of order
n ≥ 3 satisfying condition (M). Suppose that {x, y}
is a pair of non-adjacent vertices in V (D) such that
d(x) + d(y) ≤ 2n − 2. Then D is Hamiltonian if and
only if D contains a cycle through the vertices x and y.

Theorem 4.3: Let D be a 2-strong digraph of order
n ≥ 3. Suppose that D contains at most one pair of
non-adjacent vertices. Then D is Hamiltonian.

Lemma 4.4: Let D be a 2-strong digraph of order n ≥ 3
and let u, v be two distinct vertices in V (D). If D con-
tains no cycle through u and v, then u, v are not ad-
jacent and there is no path of length two between them.
In particular,

d+(u) + d−(v) ≤ n− 2, d−(u) + d+(v) ≤ n− 2

and d(u) + d(v) ≤ 2n− 4.

Theorem 4.5: Let D be a 2-strong digraph of order
n ≥ 3 satisfying condition (M). Suppose that {u, v}
is a pair of non-adjacent vertices in V (D) such that
d(u) + d(v) ≤ 2n − 2. Then D is Hamiltonian or D
contains a cycle of length n − 1 passing through u and
avoiding v (passing through v and avoiding u).

Lemma 4.6: Let D be a 2-strong digraph of order
n ≥ 3 satisfying condition (M). Suppose that {y, z}
is a pair of non-adjacent vertices in V (D) such that
d(y)+d(z) ≤ 2n−2 and C = x1x2 . . . xn−kx1 is a cycle in
D passing through y and avoiding z, where 2 ≤ n−k ≤
n − 2. If the subdigraph D〈V (D) \ V (C)〉 contains a
cycle passing through z and d(y, V (D) \ V (C)) = 0,
then D is Hamiltonian.

Lemma 4.7: Let D be a 2-strong digraph of order n ≥ 3
satisfying condition (M). Suppose that {y, z} is a pair
of non-adjacent vertices in V (D) such that d(y)+d(z) ≤
2n−2 and C = x1x2 . . . xn−2zx1 is a cycle of length n−1
passing through z and avoiding y in D. Then either D
is Hamiltonian or for every k ∈ [2, n− 3], the following
holds: A({x1, . . . , xk−1} → {xk+1, . . . , xn−2}) 6= ∅.

Lemma 4.8: Let D be a 2-strong digraph of order n ≥ 3
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satisfying condition (M). Suppose that {y, z} is a pair
of non-adjacent vertices in V (D) such that d(y)+d(z) ≤
2n−2 and C = x1x2 . . . xn−2zx1 is a cycle of length n−1
passing through z and avoiding y in D. If xa → xb and
there are integers l, s, f, t such that 1 ≤ l ≤ a < s ≤ f <
b ≤ t ≤ n − 2 and {xf , xt} → y → {xl, xs}, then D is
Hamiltonian.

5. SKETCH OF THE PROOF OF THEO-
REM 1.6

By Theorem 4.3, the theorem is true if D contains at
most one pair of non-adjacent vertices. We may, there-
fore, assume that D contains at least two distinct pairs
of non-adjacent vertices. If the degrees sum of any two
non-adjacent vertices is at least 2n−1, then by Meyniel’s
theorem, the theorem is true. We may, therefore, as-
sume that D contains a pair of non-adjacent vertices,
say y, z, such that d(y)+d(z) ≤ 2n−2. By Theorem 4.2,
to prove the theorem, it suffices to prove that D contains
a cycle through y and z. If d(y)+d(z) ≥ 2n−3, then by
Lemma 4.4 we have that D contains a cycle trough y and
z, which, in turn, implies that D is Hamiltonian (Theo-
rem 4.2). Thus, we can assume that d(y)+d(z) ≤ 2n−4.
By Theorem 4.5 we have that either D is Hamiltonian
or D contains a cycle of length n− 1 passing through z
and avoiding y (passing through y and avoiding z).

Suppose that D is not Hamiltonian, i.e., D contains no
cycle through y and z. Let C := x1x2 . . . xn−2zx1 be a
cycle of length n − 1 in D, which does not contain y.
Then, since D is 2-strongly connected, there are some
integers p, q, k, r, 1 ≤ p < q ≤ k < r ≤ n − 2 such that
{xk, xr} → y → {xp, xq} and

d(y, {x1, . . . , xp−1, xq+1, . . . , xk−1, xr+1, . . . , xn−2}) = 0;

d−(y, {xp, . . . , xq−1}) = d+(y, {xk+1, . . . , xr}) = 0.
(1)

Therefore,

d(y) = d+(y, {xp, . . . , xq}) + d−(y, {xk, . . . , xr})

≥ q − p + r − k + 2. (2)

In order to prove the theorem, it is convenient for D
and C to prove the following claims and lemma below
(the proofs we omit).

Claim 5.1: If p ≥ 2, then d−(xn−2, {z, x1, . . . , xp−1}) =
0.

Claim 5.2: Suppose that k ≥ q + 1 and xh → xl,
where h ∈ [q, k − 1] and l ∈ [k + 1, n − 2]. Then
d−(xk, {x1, . . . , xq−1}) = 0.

Claim 5.3: Suppose that k ≥ q + 1, xh → xl with
h ∈ [q, k−1] and l ∈ [k+1, r] (possibly, r = n−2). Then
there is an integer f ≥ 0 such that l + f ≤ r, xl+f → y,
d(y, {xl, . . . , xl+f−1}) = 0 (possibly, {xl, . . . , xl+f−1} =
0). Moreover, either there is a vertex xg with g ∈ [l +
f + 1, n− 2] such that xk → xg or for any c ∈ [h + 1, k]
there is a vertex xc′ with c′ ∈ [c, l−1] such that xc′ → z.

Lemma 5.4: If p ≥ 2, then A({x1, . . . , xp−1} →
{xk+1, . . . , xn−2}) = ∅.

Now we are ready to complete the proof of the main
result.

By Lemma 5.4, A({x1, . . . , xp−1} → {xk+1, . . . , xn−2})
= ∅. Similarly, if r ≤ n − 3, then A({x1, . . . , xq−1} →
{xr+1, . . . , xn−2}) = ∅. Using Lemma 4.8, we obtain
A({xp, . . . , xq−1} → {xk+1, . . . , xr}) = ∅. From the last
three equalities it follows that

A({x1, . . . , xq−1} → {xk+1, . . . , xn−2}) = ∅. (3)

From (3) and Lemma 4.7 it follows that k ≥ q + 1.
Applying Lemma 4.7 on the vertices xq and xk, we
obtain A({x1, . . . , xq−1} → {xq+1, . . . , xn−2}) 6= ∅ and
A({x1, . . . , xk−1} → {xk+1, . . . , xn−2}) 6= ∅. Let xa →
xb and xh → xl with a ∈ [1, q − 1], b ∈ [q + 1, n − 2],
h ∈ [1, k − 1] and l ∈ [k + 1, n − 2]. Choose b maximal
and h minimal with these properties, i.e.,

A({x1, . . . , xq−1} → {xb+1, . . . , xn−2}) =

A({x1, . . . , xh−1} → {xk+1, . . . , xn−2}) = ∅. (4)

From (3) it follows that b ≤ k and h ≥ q, i.e., b ∈
[q + 1, k] and h ∈ [q, k− 1]. If h ≤ b− 1, then C(y, z) =
x1 . . . xaxb . . . xkyxq . . . xhxl . . . xn−2zx1, a contradiction.
We may, therefore, assume that h ≥ b. By Lemma
4.7, A({x1, . . . , xb−1} → {xb+1, . . . , xn−2}) 6= ∅. Let
xs → xt, where s ∈ [1, b − 1] and t ∈ [b + 1, n − 2].
Choose t maximal with this property, i.e.,

A({x1, . . . , xb−1} → {xt+1, . . . , xn−2}) = ∅. (5)

From (4) it follows that s ≥ q and t ≤ k, i.e., s ∈ [q, b−1]
and t ∈ [b + 1, k]. We consider the cases l ≤ r and
l ≥ r + 1 separately.

Case 1: l ≤ r.

For this case, it is not difficult to check that the condi-
tions of Claim 5.2 hold. Therefore, there is an integer
f ≥ 0 such that l + f ≤ r, xl+f → y and either there
is a vertex xg with g ∈ [l + f + 1, n − 2] such that
xk → xg or for any c ∈ [h + 1, k] there is a vertex xc′

with c′ ∈ [c, l − 1] such that xc′ → z.

Assume first that t ≥ h + 1. Then, since the arcs yxp,
xaxb, xry, xhxl, xky, xl+fy are in D and 1 ≤ a ≤ q−1 <
s < b ≤ h < t ≤ k < l ≤ l+f ≤ r ≤ n−2, we have that
C(y, z) = x1 . . . xaxb . . . xhxl . . . xl+fyxq . . . xsxt . . . xt′

zx1, or C(y, z) = x1 . . . xaxb . . . xhxl . . . xl+fyxq . . . xs

xt . . . xkxg . . . xn−2zx1 when xt′ → z or when xk → xg

respectively. In each case we have a contradiction.

Assume next that t ≤ h. By Lemma 4.7,
A({x1, . . . , xt−1} → {xt+1, . . . , xn−2}) 6= ∅. Let xs1 →
xt1 , where s1 ∈ [1, t− 1] and t1 ∈ [t + 1, n− 2]. Choose
t1 maximal with this property, i. e.,

A({x1, . . . , xt−1} → {xt1+1, . . . , xn−2}) = ∅. (6)

From (5) (respectively, from (4)) it follows that s1 ≥ b,
i.e., s1 ∈ [b, t−1] (respectively, t1 ≤ k, i.e., t ∈ [t+1, k]).

If t1 ≥ h + 1, then C(y, z) = x1 . . . xaxb . . . xs1xt1 . . .
xkyxq . . . xsxt . . . xhxl . . . xn−2zx1, a contradiction.

We may, therefore, assume that t1 ≤ h. By Lemma
4.7, A({x1, . . . , xt1−1} → {xt1+1, . . . , xn−2}) 6= ∅. Let
xs2 → xt2 , where s2 ∈ [1, t1− 1] and t2 ∈ [t1 + 1, n− 2].
Choose t2 maximal with this property, i.e.,

A({x1, . . . , xt1−1} → {xt2+1, . . . , xn−2}) = ∅.

From (6) (respectively, from (4)) it follows that s2 ≥ t,
i.e., s2 ∈ [t, t1 − 1] (respectively, t2 ≤ k, i.e., t2 ∈ [t1 +
1, k]).
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Assume first that t2 ≥ h + 1. Then it is not difficult to
see that C(y, z) = x1 . . . xaxb . . . xs1xt1 . . . xhxl . . .
xl+fyxq . . . xsxt . . . xs2xt2 . . . xt′

2
zx1; or C(y, z) = x1 . . .

xaxb . . . xs1xt1 . . . xhxl . . . xl+fyxq . . .
xsxt . . . xs2xt2 . . . xkxg . . . xn−2zx1 when xt′

2
→ z or

when xk → xg, respectively. In each case we have a
contradiction.

Continuing this process, we finally conclude that for
some m ≥ 0, tm ∈ [h + 1, k] since all the vertices
xt, xt1 , . . . , xtm are distinct and in {xq+1, . . . , xk}. By
the above arguments we have that:

If tm is odd, then C(y, z) = x1 . . . xaxb . . . xs1xt1 . . .
xsmxtm . . . xkyxq . . . xsxt . . . xs2xt2 . . . xsm−1xtm−1 . . .
xhxl . . . xn−2zx1;

If tm is even, then C(y, z) = x1 . . . xaxb . . . xs1xt1 . . .
xsm−1xtm−1 . . . xhxl . . . xl+fyxq . . . xsxt . . . xs2xt2 . . .
xsmxtm . . . xt′m

zx1 or C(y, z) = x1 . . . xaxb . . . xs1xt1 . . .
xsm−1xtm−1 . . . xhxl . . . xl+fyxq . . . xsxt . . . xs2xt2 . . .
xsmxtm . . . xkxg . . . xn−2zx1 when xt′m

→ z or when
xk → xg, respectively. In all cases we have a cycle pass-
ing through y and z, which contradicts our supposition
and, hence, the discussion of Case 1 is completed.

Case 2: l ≥ r + 1.

Then r ≤ n − 3. Recall that h ≥ b and xs → xt,
where s ∈ [q, b − 1] and t ∈ [b + 1, k]. Note that y, xh,
y, z are two distinct pairs of non-adjacent vertices. We
distinguish two subcases: Subcase t ≤ h and Subcase
t ≥ h+1. Here, we will consider only the subcase t ≤ h.

Subcase: t ≤ h.

Then b ≤ h− 1 since h ≥ t ≥ b + 1.

Assume first that t = h. Then xs → xh → xl. By
Lemma 4.9, A({x1, . . . , xh−1} → {xh+1, . . . , xn−2}) 6=
∅. Let xc → xd, where c ∈ [1, h−1] and d ∈ [h+1, n−2].
From the second equality of (4) it follows that d ≤ k,
i.e., d ∈ [h + 1, k]. By (5) we have that c ≥ b, i.e.,
c ∈ [b, h− 1]. Therefore,
C(y, z) = x1 . . . xaxb . . . xcxd . . . xkyxq . . . xsxhxl . . .
xn−2zx1, a contradiction.

Assume next that t ≤ h− 1. Then from the maximality
of b and t it follows that d−(xh, {x1, . . . , xb−1}) = 0.
This together with (6) implies that

d(xh) = d+(xh, {x1, . . . , xb−1}) + d(xh, {xb, . . . , xk})+

d−(xh, {xk+1, . . . , xl−1}) + d(xh, {xl, . . . , xn−2})

+d(xh, {z}) ≤ b− 1 + 2k − 2b + l − 1− k + 2n− 2l

= 2n− l − 2 + k − b.

This together with (2), d(z) ≤ n − 1 and r ≤ n − 3
implies that

2d(y)+d(xh)+d(z) ≤ 2q−2p+2r−2k+4+2n−l−2+k−b

+n− 1 ≤ 4n− 2− (l − r)− (k − q)− (b− q)− 2p,

which contradicts condition (M), since k−q ≥ 0, b−q ≥
0. This completes the sketch of the proof of Theorem
1.6.
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