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ABSTRACT
The paper is the answer to the question posed to the
author during a report at the CSIT-2017 conference:
whether it is possible to change a logic-predicate net-
work so that not only objects with descriptions from
the training set are recognized, but also differ slightly
from them. The notion of partial sequence of a pred-
icate formula, introduced by the author earlier, makes
it possible to change the content of network cells so
that the degree of similarity of a recognizable object
fragment to fragments of objects from the training set,
and then the degree of certainty that the object belongs
to a given class, are calculated. A brief description of
the logic-predicate approach to AI problems, the infor-
mation about a logic-predicate network, the notion of
partial sequence are presented in the paper.
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1. INTRODUCTION
Many Artificial Intelligence problems permit their for-
malization by means of predicate calculus language. Prob-
lems formulated in such a way are NP-complete or NP-
hard ones [2]. The computational complexity of such
problems, when being solved by an exhaustive search
algorithm, coincides with the length of their encoding
using a binary string [11].

A hierarchical level description of classes was suggested
in [3] to decrease the computational complexity of these
problems. To construct such a level description, “fre-
quently appeared” sub-formulas of “small complexity”
are extracted from class descriptions. This allows to
decompose the main problem into a series of similar
problems with input data with a less length.

Construction of a level logic-predicate network with the
use of level description of classes was offered in [6] and
described in [8]. It is based on the extraction from
the descriptions of classes of objects of such fragments,
which appear in many objects of classes. Recognition
itself is reduced to the sequential solution of problems
of the same type with a less length of input data.

A modification of the logic-predicate network allowing
to recognize approximately new objects, is offered in the

paper. The degree of coincidence is calculated for de-
scription of an object part and the formula, satisfiability
of which is checked in the cell.

2. LOGIC-PREDICATE APPROACH TO
AI PROBLEMS

A detailed description of the logic-predicate approach
to solving AI problems is available in [9]. Here only the
main problem setting and some methods of its solution
are formulated.

Let an investigated object be represented as a set of
its elements ω = {ω1, . . . , ωt} and be characterized by
predicates p1, . . . , pn which define some properties of the
elements or relations between them. The description
S(ω1, . . . , ωt) of the object ω is a set of all constant
literals with predicates p1, . . . , pn which are valid on
ω. There is a set of goal formulas A1(x1, . . . , xm1), . . . ,
AK(x1, . . . , xmK ) in the form of elementary conjunc-
tions of atomic formulas.

The solution of many Artificial Intelligence problems
may be reduced to the proof of a series of formulas (for
k = 1, . . . ,K) in the form

S(ω)⇒ ∃(x1 . . . xmk ) 6= Ak(x1, . . . , xmk ).1 (1)

If the number m of arguments in Ak(x1, . . . , xmk ) is
not equal to the number t of elements in ω then the
verification problem of such a formula is NP-complete
[5].

If the number m of arguments in Ak(x1, . . . , xmk ) equals
to the number t of elements in ω then the problem (1)
becomes a GI-complete one [10]. It means that it is
polynomially equivalent to an “open” problem Graph
Isomorphism for which it is not proved its NP-comple-
teness or its polynomiality is proved [1].

Note that both a logical algorithm and an exhaustive
search algorithm allow not only to prove that there exist
values for variables satisfying the formulaAk(x1, . . . , xm)
but to find these values.

So an algorithm verifying the formula (1) allows to solve
the problem “what are the different values of x1, . . . , xm
from ω that satisfy the formula Ak(x1, . . . , xm)?”

S(ω)⇒?(x1, . . . , xm)6=Ak(x1, . . . , xm). (2)

1The notation ∃(x1 . . . xm) 6= P is used for the formula
∃x1 . . . xm(&m−1

i=1 &m
j=i+1 xi 6= xj & P ).

CSIT Conference 2019, Yerevan, Armenia, September 23-27

102



This problem is NP-hard and its solving algorithms have
the same upper bounds as for the problem (1).

3. COMMON UP TO THE NAMES OF
ARGUMENTS SUB-FORMULA

Definition 1. Elementary conjunctions P and Q are
called isomorphic if there is an elementary conjunction
R and substitutions λR,P and λR,Q of the arguments of
P and Q, respectively, instead of the variables in R such
that the results of these substitutions coincide up to the
order of literals.

The substitutions λR,P and λR,Q are called unifiers of
R with P and Q, respectively.

Definition 2. Elementary conjunction C is called a
common up to the names of arguments sub-formula of
two elementary conjunctions A and B if it is isomor-
phic to some sub-formulas A′ and B′ of A and B, re-
spectively.

An algorithm of extraction of a maximal (having a max-
imal number of literals) common up to the names of ar-
guments sub-formula C of two elementary conjunctions
A and B and determining the unifiers λC,A′ and λC,B′

is described in [7]. It is based on the notion of partial
sequence.

The number of steps of this algorithm is O(NNA
A NNB

B ),
where NA and NB are the numbers of literals in A
and B, respectively. The minimal number of steps of
this algorithm is O((NANB)2), the middle estimate is

O((NANB)1/2 log(NANB)).

4. LEVEL DESCRIPTION
Level description of goal formulas allows essentially to
decrease the number of steps for an algorithm solving
problems (1) and (2). This notion is based on the
extraction of common up to the names of arguments
sub-formulas P 1

i (y1i ) (i = 1, . . . , n1) of goal formulas
Ak(x1, . . . , xm) (k = 1, . . . ,K) with ”small complexity”
and then sequentially check formulas in the form (1)
with essentially less lengths. Simultaneously we find
unifiers of P 1

i (y1i ) and sub-formulas of Ak(x1, . . . , xm).

ALk (xLk )

p11(y11) ⇔ P 1
1 (y11)

...
p1n1

(y1n1
) ⇔ P 1

n1
(y1n1

)
...

pli(y
l
i) ⇔ P li (y

l
i)

...
pLnL(yLnL) ⇔ PLnL(yLnL)

. (3)

Here pli (l = 1, . . . , L) are new l-level predicates with
new l-level variables yli for lists of a less-level variables
defined by the equivalences pli(y

l
i) ⇔ P li (y

l
i). ALk (xLk )

are results of substitutions of pli(y
l
i) into Ak(xk) instead

of their sub-formulas P li (y
l
i).

Construction of a level description is described in [9,
8]. Let N be the maximal number of literals in Ak(xk)

(k = 1, . . . ,K). The upper bound of this algorithm
number of steps is O(K2N2N ).

5. LOGIC-PREDICATE NETWORK
A logic-predicate network consists of two blocks: a train-
ing block and a recognition block [6, 9]. Let a training
set of objects ω1, . . . , ωK be given to form an initial vari-
ant of the network training block. Replace every con-
stant ωkj in S(ωk) by a variable xkj (k = 1, . . . ,K, j =

1, . . . , tk) and substitute the sign & between the atomic
formulas. Initial goal formulas A1(x1), . . . , AK(xK) are
obtained. Construct a level description for these goal
formulas. The first approximation to the recognition
block is formed.

If after the recognition block run an object is not rec-
ognized or has a wrong identification then it is pos-
sible to train the network anew. The description of
the “wrong” object must be added to the input set of
the training block. The training block extracts com-
mon sub-formulas of this description and previously re-
ceived formulas forming the recognition block. Some
sub-formulas in the level description would be changed.
Then the recognition block is reconstructed.

The problem is that such a network recognizes only ob-
jects that have been presented in the training set or
according to which it was re-trained. But it recognizes
them exactly.

6. PARTIAL SEQUENCE
The problem of checking if the formula A(x) or some its

sub-formula Ã(y) is a consequence of the set of formu-
las S(ω) is under consideration in [4]. Here the list of
arguments y is a sub-list of arguments x.

Every sub-formula Ã(y) of the formula A(x) is called its
fragment.

Let a and ã be the numbers of atomic formulas in A(x)

and Ã(y), respectively, m and m̃ be the numbers of
objective variables in x and y, respectively.

Numbers q and r are calculated by the formulas q = ã
a

,

r = m̃
m

and characterize the degree of coincidence be-

tween A(x) and Ã(y). For every A(x) and its fragment

Ã(y) it is true that 0 < q ≤ 1, 0 < r ≤ 1. Besides,

q = r = 1 if and only if Ã(y) coincides with A(x).

Under these notations, the formula Ã(y) will be called
a (q, r)-fragment of the formula A(x).

If S(ω) ⇒ ∃x6= A(x) is not valid but for some (q, r)-

fragment Ã(y) (q 6= 1) of A(x) the sequent S(ω) ⇒
∃y 6= Ã(y) is true, we will say that S(ω) ⇒P ∃x6= Ã(x)
is a partial (q, r)-sequent.

As the checking whether S(ω)⇒ ∃y 6= Ã(y) may be done
by some constructive method (for example, by exhaus-
tive search or by deduction in a sequential predicate
calculus) then such values τ (τ ⊆ ω) for the list of vari-

ables y that S(ω)⇒ Ã(τ) will be found.

Definition 3. Conjunction of literals from A(x) which
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are not in Ã(y) is called a complement of Ã(y) up to
A(x).

A complement of Ã(y) up to A(x) will be denoted by

CA(x)Ã(y).

Definition 4. A (q, r)-fragment Ã(y) of the formula
A(x) is called contradictory to the description S(ω)

on the list of constants τ if S(ω) and C
[A(x)]

y

τ

Ã(τ) lead

to the contradiction, i.e., S(ω)⇒ ¬C
[A(x)]

y

τ

Ã(τ).

Here the denotation [A(x)]y
τ

is used for the result of
substitution of the constants from the list τ instead of
the corresponding variables from the list y.

7. FUZZY RECOGNITION BY A LOGIC-
PREDICATE NETWORK

It is suggested to change the content of the network cells
by replacing the checking of Sl−1(ω) ⇒ ∃xli 6=P li (xli) in
the ith cell of the lth level with the partial sequence
checking Sl−1(ω)⇒P ∃xli 6=P li (xli).

While partial sequence checking, all lists of constants
τ li j and maximal not contradictory on τ li j with Sl−1(ω)

sub-formula P̃ li j(x
l
i j) of the formula P li (x

l
i) are found.

Parameters qli j and rli j are calculated with the use of

the full form of formulas P li (x
l
i) and P̃ li (y

l
i), i.e., with

the replacement in them of each atomic formula of the
levels l′ (l′ < l) by the defining elementary conjunction.

Except this, a “degree of certainty” certli that the recog-
nition would be valid is calculated in every cell. De-
notation preli will be used for the number of the cell
preceding the ith cell of the lth level while the cur-
rent traversal of the graph. Initially, cert01 = 1, pre1i =
0 (i = 1, . . . , n1). While first visit of the ith cell of
the lth level certli := min{cert1−1

prel
i

, qli}. This corre-

sponds to conjunction of degrees of certainty while suc-
cessive passage along one branch of network traversal.
While next visit of the ith cell of the lth level certli =
max{certli,min{cert1−1

prel
i

, qli}}. This corresponds to dis-

junction of degrees of certainty while parallel passage
along different branches of network traversal.

Example

To describe the contour images, there are two predicates
V and L presented in Figure 1.
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y z

V (x, y, z)⇐⇒ (6 zxy < π)

xy z L(x, y, z, )⇐⇒ x belongs a segment [y, z]

Figure 1. Initial predicates.

Representatives of the contour images of the “boxes”
described by predicates V and L are given. After replac-
ing the constants with variables, we obtain the training
sample presented in Figure 2.

Extract from the formulas, corresponding to the images
a, b and c, maximal sub-formulas isomorphic to each
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Figure 2. Training set.

other. Thus, we obtain the common to the names of
variables sub-formulas, corresponding to the images in
Figure 3.
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Figure 3. Images of the extracted sub-formulas.

The numbers of variables and predicates in the formulas,
corresponding to these images, are mab = 8, aab = 20;
mac = 8, aac = 16; mbc = 7, abc = 11, respectively.

The formula corresponding to the image bc is isomorphic
to sub-formulas of the formulas corresponding to the
images ab and ac. Therefore, it forms the first level of
the network. Formulas corresponding to the images ab
and ac form the 2nd level of the network. Formulas
corresponding to the training set will form the 3rd level
of the network.
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Figure 4. Logic-predicate network.

Schematically, this network is presented in Figure 4. At
the same time, the content in the cells of the scheme
means that the partial sequent S(ω) ⇒P ∃x 6= A(x) is
checked in this cell. Here S(ω) is the description of the
object being recognized, A(x) is the formula that defines
the corresponding image. In addition, values for vari-
ables are found and the consistency of the complement

to Ã(x) is checked.

An object presented in Figure 5 is given for recognition.

�� BB

1 2

3 4 5 6

7 8

d

Figure 5. Image of a control object.

To recognize it, partial sequence “d”(1, 2, . . . , 8) ⇒P

∃y1 . . . y7“bc”(y1, . . . , y7) is checked in the 1st layer.2

2The notation “X”(x) is used for the formula describing
image X with arguments x.
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Sequence “d”(1, 2, . . . , 8)⇒ ∃y1 . . . y7“bc”(y1, . . . , y7) is
valid. Variables have values y1 = 1, y2 = 2, y3 = 3,
y4 = 4, y5 = 6, y6 = 7, y7 = 8. First-level variable y1

has the value a1 = (1, 2, 3, 4, 6, 7, 8). certdbc = 1.

At first partial sequence “d1”(a1, 5) ⇒P

∃y1 . . . y7“ab”(a1, y6) is checked in the 2nd layer.
The only consistent fragment coincides with the
formula describing bc. Hence, m̃ab = 7, ãab = 11,
certdab = min{1, 11

20
} = 11

20
.

When checking “d1
′′
(a1, 5)⇒P ∃y1 . . . y7“ac”(a1, y6) in

the second layer, the same consistent fragment is se-
lected. But since the number of predicates in the de-
scription of ac is 16, then certdac = min{1, 11

16
} = 11

16
.

In the third layer in the jump from ab to a, the same
consistent fragment bc is extracted. But since the num-
ber of predicates in the description of a is 31, then
certdab→a = min{ 11

20
, 11
31
} = 11

31
≈ 0.355.

In the third layer in the jump from ab to b, the seg-
ment [7, 4] is added to the earlier exteacted fragment. It
changes its number of predicates in the fragment m̃b =
7, ãb = 13. certdab→b = min{ 11

31
, 13
24
} = 13

24
≈ 0.541.

In the third layer in the jump from bc to c, the node 5 is
added to the earlier exteacted fragment. It changes its
number of predicates in the fragment m̃c = 8, ãc = 20.
certdbc→c = min{1, 20

34
} = 20

34
≈ 0.588.

The general degree of certainty that a representative of
the class “ boxes ” is given as a control image is cert =
max{ 11

31
, 13
24
, 11
31
, 20
34
} = 20

34
≈ 0.588. Moreover, the 7

8

elements of this image coincides with the 8
10

elements
of the standard image c.

8. CONCLUSION
The notion of partial sequence of the predicate formula,
based on the notion of a common up to the names
of arguments sub-formula of two elementary conjunc-
tions of predicate formulas, made it possible to propose
a modification of the logical-predicate recognition net-
work. This modification allows not only to determine
the exact class to which a control object belongs (if its
description coincides with the description of some object
from the training set), but also to calculate the “degree
of certainty ” that the recognition is correct for a con-
trol object with the description which is different from
some standard one.

Moreover, if the “degree of certainty” is sufficiently high,
then we can retrain the network and reconstruct it for
exact recognition in the future for objects with a simi-
lar description. This is important because checking the
partial sequence of a formula has a significantly greater
computational complexity compared to checking the se-
quence of a formula, even if the formulas in each node
are rather short (or have a small number of arguments).
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