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ABSTRACT 
In this paper a unified software platform DTR (Discrete 
Tomography Reconstruction) is introduced created for 
discrete tomography reconstruction algorithms. 
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1. INTRODUCTION
Discrete Tomography deals with the recovery of discrete sets 
from their projections composed along a given set of 
directions. Discrete sets or lattice sets are finite subsets of the 
integer lattice 𝑍". The lattice directions are represented by 
any nonzero vectors of 𝑍". A line 𝑙 in 𝑑-dimensional 
Euclidean space is a lattice line if it is parallel to a lattice 
direction and passes through at least one point in 𝑍". A 
projection of a lattice set in a lattice direction 𝑢 is a function 
giving the number of its points on each line parallel to the 
direction 𝑢. In Discrete Tomography, the typical number of 
projection directions is two to four ([1]). 
Given a set of lattice directions {𝑢', 𝑢),⋯ , 𝑢+} and projections 
along those directions: 𝐹',𝐹),… , 𝐹+. Consider Consistency 
and Reconstruction problems in Discrete Tomography. 
Consistency: Does there exist a discrete set 𝑇 ∈ 𝑍" with given 
projections 𝐹',𝐹),… ,𝐹+ in lattice directions 𝑢',𝑢),⋯ , 𝑢+? 
Reconstruction: Construct a discrete set 𝑇	 ∈ 𝑍" from its 
projections 𝐹',𝐹),… ,𝐹+. 
These are NP-hard problems for 𝑑 ≥ 2 and 𝑙	 ≥ 3 non-
parallel projections in the integer lattice 𝑍" ([2]).  
Due to the complexity of the problem, a special attention has 
been given to the 2-dimensional case. Subsets of 𝑍) can be 
presented as binary images or binary matrices, where the 1s 
determine the cells of 𝑇. Various studies are devoted to the 
case of orthogonal projections: horizontal and vertical. In 
terms of binary matrices, the row sum corresponds to the 
horizontal projection of 𝑇, and the column sum corresponds 
to the vertical projection. With only horizontal and vertical 
projections the problem has polynomial complexity ([3]), but 
the number of solutions can be large ([4]). Any prior 
knowledge /constraint/ about the image to be reconstructed, 
can reduce the search space of possible solutions. Using 
geometrical knowledge about discrete sets, such as convexity 
and connectedness, is a well-studied area ([2], [5], [6]). In 
most cases these are NP-complete problems, in the meantime, 
the existence/construction problems for horizontally and 
vertically convex and connected matrices can be solved in 
polynomial time ([7]). 
Another property of discrete sets, coming from their binary 
matrix representation is the non-repetitiveness of the matrix 
rows [8], which appears also in a number of applications (such 
as the design of experiments [9]). But mainly, this 

property/constraint leads to hard or open problems in terms of 
complexity. 
A number of studies are devoted to the case of orthogonal and 
diagonal projections [2], [10]. In general, the problem of 
existence/reconstructing of binary images from the given 
orthogonal and diagonal projections is NP-complete [2]. Also 
here, the case of horizontal-vertical-diagonal connected and 
convex sets has polynomial complexity [10]. 
In this paper, we introduce a unified software platform DTR 
(Discrete Tomography Reconstruction) created for discrete 
tomography reconstruction algorithms, where a set of existing 
representative algorithms are implemented. DTR is developed 
using modern programing languages (JAVA, JS, HTML, 
CSS, REST API) and has cross platform support (UNIX, 
WINDOWS, OSX), which is very flexible for adding new 
algorithms implementations into the platform. Another 
advantage is its reusability in other systems. 
The rest of the paper is organized as follows: In Section 2 
below a brief summary of reconstruction problems for 
different sets of projections, as well as short descriptions of 
corresponding algorithms, which have been implemented in 
DTR are given. Section 3 describes the platform in general 
and some implementation details. 

2. PROBLEM DEFINITION AND
RECONSTRUCTION ALGORITHMS
2.1. Orthogonal projections
Consider 𝑇, a finite set in the two-dimensional integer grid 𝑍), 
and let 𝐴 be its binary matrix representation, where 1s in the 
matrix determine the cells of 𝑇. 𝑅 = (𝑟',⋯ , 𝑟:) and 𝑆 =
(𝑠'⋯ , 𝑠>) are the row and column sums of 𝐴, where   𝑟? =
∑ 𝑎?,B>
BC' ,			𝑖 = 1,⋯ ,𝑚 and 𝑠B = ∑ 𝑎?,B:

?C' ,			𝑗 = 1,⋯ , 𝑛. 
Obviously 𝑅 corresponds to the horizontal projection of 𝑇, 
and 𝑆 corresponds to the vertical projection. 
Consistency: Given positive integer vectors 𝑅 = (𝑟',⋯ , 𝑟:) 
and 𝑆 = (𝑠'⋯ , 𝑠>). Does there exist a binary matrix of size 
𝑚× 𝑛 with row sum 𝑅 and column sum 𝑆? 
Reconstruction: Construct a binary matrix from its row and 
column sum vectors. 
The consistency and reconstruction problems are solved by 
Ryser in [3], where also a reconstructing algorithm of 
complexity 𝑂(𝑚𝑛) is provided. The outline of the Ryser’s 
algorithm is as follows. Given row and column sum vectors 
𝑅 = (𝑟',⋯ , 𝑟:) and 𝑆 = (𝑠'⋯ , 𝑠>). Firstly the “maximal 
matrix” AL is constructed, where each of its 𝑚 rows has the 

following structure: 1,1,⋯ ,1MNONP
QR

0,0,⋯ ,0MNONP
>TQR

 (𝑟? 1s followed by 𝑛 −
𝑟? 0s) for 1 ≤ 𝑖 ≤ 𝑚. Then, the necessary number of 1s in 
columns (𝑠W 1s in the 𝑖-th column) of the required matrix is 
provided step by step (column by column, starting from the 
last column) by moving 1s to the current column (within the 
same row). 
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The first algorithm, which is implemented in the unified 
software platform DTR, is the Ryser’s algorithm, as a classic 
algorithm in this domain.  
2.2. Orthogonal projections with 
geometrical constraints 
Recall that with only horizontal and vertical projections the 
number of possible solutions can be exponentially large ([4]). 
Convexity and connectedness are two commonly used 
geometrical properties of discrete sets /binary images/ to 
narrow the class of possible solutions.  
A binary matrix is ℎ-convex, if the 1s in every row form an 
interval; and it is 𝑣-convex if the 1s in every column form an 
interval. A binary matrix is ℎ𝑣-convex if it is both ℎ-convex 
and 𝑣-convex. A binary matrix is connected, if the 1s are 
connected with respect to the adjacency relation (4-adjacency, 
where vertical and horizontal neighbors are taken into 
account, and 8-adjacency, where vertical, horizontal and 
diagonal neighbors are taken into account). 
In most cases the consistency and reconstruction of binary 
matrices with given orthogonal projections and with 
convexity/connectivity properties are NP-complete problems, 
however, the existence/construction problems for ℎ𝑣-convex 
and connected matrices can be solved in polynomial time; an 
algorithm is introduced in [7] for reconstructing of ℎ𝑣-convex 
connected matrices (with respect to 4-adjacency). The 
algorithm first constructs a 2-Satisfiability (2-SAT) Boolean 
expression such that it is satisfiable if and only if there exists 
a horizontally and vertically convex and connected matrix 
with given orthogonal projections.  In the final step the 
algorithm only needs to solve the 2SAT expression. A similar 
algorithm is introduced in [11] for the case of 8-adjacency. 
These are the next two algorithms implemented in DTR.  

2.2. Orthogonal and diagonal projections 
Consider a binary matrix 𝐴 = {𝑎?,B} with 𝑚 rows and 𝑛 
columns. Let  𝐷 = (𝑑',… ,𝑑:[>T') denote the diagonal sum 
vector of 𝐴, where: 
𝑑\ = ∑ 𝑎?B?[BC\[' , 𝑘 = 1,… ,𝑚 + 𝑛 − 1. 
The anti-diagonal sum vector 𝐷_ = (𝑑'_,⋯ , 𝑑:[>T'_ ) can be 
defined accordingly. 
In case of horizontal, diagonal and vertical projections the 
reconstruction problems of ℎ𝑣𝑑-connected (with respect to 8-
adjacency) and convex (in the horizontal, vertical and 
diagonal directions) matrices can be solved in polynomial 
time; the algorithm uses polynomial transformation of the 
reconstruction problem to the 2-SAT problem ([10]). 
The next algorithm, which is implemented in DTR, is the 
algorithm for reconstructing binary images from given 
horizontal and diagonal projections. Complexity of the 
problem is not known, and we consider here a polynomial 
time heuristic algorithm HD developed in [12].  
Similar to Ryser’s algorithm, it first constructs the maximal 
matrix  �̅�, and then the necessary number of 1s in diagonals 
of the required matrix is provided step by step (diagonal by 
diagonal) by moving 1s to the current diagonal (within the 
same row) to get a required matrix. 

3. PLATFORM FEATURES AND
EXPERIMENTAL DATA
In this section, we introduce version 1.0 of the unified 
software platform DTR, which is designed for solving discrete 
tomography reconstruction problems having as an input the 
projections of a binary matrix/image. In this version two main 
parts are distinguished: one of them is considered to work with 
orthogonal projections; and the other - to work with 
orthogonal and diagonal projections.  Unified user interface is 
given in Figure 1 below. 

Figure 1 
DTR user interface 

DTR is developed using modern programing languages 
(JAVA, JS, HTML, CSS, REST API) and has cross platform 
support (UNIX, WINDOWS, OSX). 
Now we will go through the description of DTR features. 
Input is the possibility to input projections of an image under 
reconstruction, and also - geometrical properties of the image.  
Compatibility checking provides possibility to check the 
compatibility of inputted projections. In case of orthogonal 
projections the compatibility of given pair of projection 
vectors assumes general maximum values and sums equality 
check: 

∑ 𝑠\>
\C' = ∑ 𝑟?:

?C'  
0 ≤ 𝑟? ≤ 𝑛,			1 ≤ 𝑖 ≤ 𝑚 
0 ≤ 𝑠\ ≤ 𝑚	, 1 ≤ 𝑘 ≤ 𝑛 

Besides the simple compatibility checking of input vectors, 
there is a need to check also the “majorization condition” 
which is a necessary and sufficient condition for existence of 
a matrix with given orthogonal projections ([3]). This is 
provided before the algorithm starts to work. 
In the case when also diagonal projections are inputted, the 
compatibility checking of input vectors assumes the 
following: 

∑ 𝑑\:[>T'
\C' = ∑ 𝑟?:

?C'   
0 ≤ 𝑟? ≤ 𝑛,			1 ≤ 𝑖 ≤ 𝑚 

0 ≤ 𝑑\ ≤ 𝑚\	, 1 ≤ 𝑘 ≤ 𝑚+ 𝑛 − 1, 
where 
 𝑚\ =

a
𝑘,																																									𝑖𝑓		1 ≤ 𝑘 ≤ min	(𝑚, 𝑛)

min	(𝑚, 𝑛),																								𝑖𝑓	 min(𝑚, 𝑛) + 1 ≤ 𝑘 ≤ max(𝑚, 𝑛) − 1	
min(𝑚, 𝑛) − (𝑘 − max(𝑚, 𝑛)), 𝑖𝑓	 max(𝑚, 𝑛) ≤ 𝑘 ≤ 𝑚 + 𝑛 − 1

 

Additionally, we need to check also the “majorization 
conditions”, which are necessary conditions for the existence 
of a matrix with given horizontal and diagonal projections 
[12]. Those conditions are related to different fragments of the 
maximal matrix �̅�, and it is worth mentioning that they are to 
be checked also in every step, because if one of them is 
violated, then the required matrix cannot be reconstructed.  
Visualization is a common unified visualization component, 
based on SVG (Scalable Vector Graphics) technology, which 
is an image representation technology with vectorization 
implementation. It enables to visualize the final constructed 
matrix, as well as intermediate matrices of current steps if 
necessary.  
Additionally, Debugging provides possibility to follow the 
moves in each step, which is helpful in the algorithms 
development stage. 
Testing/experiments is mainly designed for the algorithm HD 
to assess its performance although it can be applied to all the 
algorithms of the platform.  
The following cases are conducted: 
• Input is a pair of random vectors.
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In this case random vectors are generated, and then 
compatibility of the vectors, as well as the necessary 
conditions are checked. For keeping randomness there is an 
option to insert the matrix size and rate of each component of 
the row and diagonal sum vectors comparative to its maximal 
value. 
• Input is row and diagonal sum vectors of random binary

matrices.
For this purpose random matrices are generated and then row 
and diagonal sums are calculated. To keep randomness in 
generating process an option is created to insert matrix size 
and probability of each matrix cell (to be 1). 
• Input is row and diagonal sum vectors inserted

manually.
The purpose here is to check the algorithm performance for 
specially created test cases of row and diagonal sums. 

Consider examples. 
An implementation of Ryser’s algorithm for the given 
projection vectors 𝐻 = (5,4,3,2,2) and 𝑉 = (4,4,3,3,2) is 
given in Figure 2; the image in the left part corresponds to the 
maximal matrix, and the image in the right part corresponds 
to the finally constructed matrix. 

Figure 2 
Implementation of Ryser’s algorithm for 	
𝐻 = (5,4,3,2,2), 𝑉 = (4,4,3,3,2) 

The next example given in Figure 3, corresponds to the 
construction of ℎ𝑣-convex 4-connected image (solving 2SAT 
expression). 

Figure 3 
ℎ𝑣-convex 4-connected image for 
   𝐻 = (1,2,5,2,1), 𝑉 = (1,3,3,3,1) 

The second part of the platform works with the orthogonal and 
diagonal projections. Figure 4 demonstrates the 
implementation of the algorithm HD, where the input row and 
diagonal sum vectors are taken from a generated random 
binary matrix: 

Figure 4: (a) 

Figure 4: (b) 

Figure 4: (c) 

Figure 4. Stages of performance of algorithm HD: 
(a) generated random matrix, (b)  created maximal 
matrix, (c) reconstructed image 

Figure 5 demonstrates the performance of algorithm HD. 

Figure 5: (a) 

Figure 5: (b) 

Figure 5 
Performance of algorithm HD with debugging: 

(a) current step, where only a part of an image is
reconstructed; cells in green show the 1s to be 
moved to the current diagonal. (b) final 
reconstructed image. 
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5. CONCLUSION
In this paper, a unified software platform DTR (Discrete 
Tomography Reconstruction) is introduced created for 
discrete tomography reconstruction algorithms, where some 
existing representative algorithms are implemented. As a 
future work more algorithms implementation is planned to be 
added to the platform. Also, more testing and experimentation 
will be added including testing on real projections data 
collected from different spheres of discrete tomography use 
cases. 
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