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ABSTRACT 
In this paper, the problem of the quantitative description of 
partitions (QDP) of arbitrary 𝑚𝑚-subsets of the 𝑛𝑛-dimensional 
unit cube is considered for a given 𝑚𝑚, 0 ≤ 𝑚𝑚 ≤ 2𝑛𝑛. It is 
shown that QDP can be reduced to the case of those subsets 
of 𝐸𝐸𝑛𝑛 corresponding to monotone Boolean functions. NP-
hardness of the problem is proved.   
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1. INTRODUCTION
Let 𝐸𝐸𝑛𝑛 = {(𝑥𝑥1, 𝑥𝑥2,⋯ ,𝑥𝑥𝑛𝑛)| 𝑥𝑥𝑖𝑖 ∈ {0,1}, 𝑖𝑖 = 1,⋯ ,𝑛𝑛} denote 
the set of vertices of the 𝑛𝑛-dimensional unit cube. An arbitrary 
vertex of 𝐸𝐸𝑛𝑛 is obtained by assigning values to the binary 
variables 𝑥𝑥1, 𝑥𝑥2,⋯ ,𝑥𝑥𝑛𝑛. 𝐸𝐸𝑛𝑛 corresponds to the Boolean lattice 
(2[𝑛𝑛],⊆) with the ground set 2[𝑛𝑛] (the set of all subsets of 
[𝑛𝑛] = {1,2,⋯ ,𝑛𝑛}), and with the partial order by inclusion (⊆). 
𝐸𝐸𝑛𝑛 can be visualized through its Hasse diagram [1]. The 
diagram has 𝑛𝑛 + 1 levels numbered from 0 (the lowest level) 
to 𝑛𝑛; the 𝑘𝑘-th level (𝑘𝑘 = 0,⋯ ,𝑛𝑛) contains all vertices of 𝐸𝐸𝑛𝑛 
that have 𝑘𝑘 entries equal to 1. Edges connect those vertices at 
neighbouring levels that are related by a cover relation. We 
notice that the 𝑘𝑘-th and (𝑛𝑛 − 𝑘𝑘)-th levels contain 𝐶𝐶𝑛𝑛𝑘𝑘 vertices, 
and they are symmetric with respect to the 0-th and 𝑛𝑛-th levels 
for all 𝑘𝑘 = 0,⋯ ,𝑛𝑛. 

1.1. Partitioning of 𝑬𝑬𝒏𝒏 
For an arbitrary variable 𝑥𝑥𝑖𝑖 consider the partitioning/splitting 
of 𝐸𝐸𝑛𝑛 into two (𝑛𝑛 − 1)-dimensional subcubes of 𝐸𝐸𝑛𝑛 
according to the value of 𝑥𝑥𝑖𝑖: 
𝐸𝐸𝑥𝑥𝑖𝑖=0
𝑛𝑛−1 = {(𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛) ∈ 𝐸𝐸𝑛𝑛|𝑥𝑥𝑖𝑖 = 0}  and 

𝐸𝐸𝑥𝑥𝑖𝑖=1
𝑛𝑛−1 = {(𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛) ∈ 𝐸𝐸𝑛𝑛|𝑥𝑥𝑖𝑖 = 1}.  

Each set 𝑀𝑀 ⊆ 𝐸𝐸𝑛𝑛 will have (empty or non-empty) subsets in 
these subcubes: 𝑀𝑀𝑥𝑥𝑖𝑖=1 ⊆ 𝐸𝐸𝑥𝑥𝑖𝑖=1

𝑛𝑛−1  and 𝑀𝑀𝑥𝑥𝑖𝑖=0 ⊆ 𝐸𝐸𝑥𝑥𝑖𝑖=0
𝑛𝑛−1 . Figure 2 

shows a schematic picture of the partition. 

Figure 1. Partitioning of 𝐸𝐸𝑛𝑛according to the variable 𝑥𝑥𝑖𝑖. 

1.2. Associated vector of partitions 
An integer vector 𝑆𝑆 = (𝑠𝑠1,⋯ , 𝑠𝑠𝑛𝑛) is called an associated 
vector of partitions of the set 𝑀𝑀 ⊆ 𝐸𝐸𝑛𝑛, if 𝑠𝑠𝑖𝑖 = �𝑀𝑀𝑥𝑥𝑖𝑖=1� for all 
𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑛𝑛.  
Associated vector of a set provides a quantitative (numerical) 
description of the set by means of its partitions.  In general, 
different sets may have the same associated vector of 
partitions (the same quantitative description of its partitions). 
For example, the following sets 𝑀𝑀1 and  𝑀𝑀2 in 𝐸𝐸5 have the 
same associated vector of partitions 𝑆𝑆 = (4,3,2,2,1):   
𝑀𝑀1 = {(10110), (11001), (11010), (11100)} ,  
𝑀𝑀2 = {(10010), (11101), (11000), (11110)}. 
For a given 𝑚𝑚, 0 ≤ 𝑚𝑚 ≤ 2𝑛𝑛, let 𝐻𝐻𝑚𝑚(𝑛𝑛) denote the set of all 
𝑚𝑚-subsets of 𝐸𝐸𝑛𝑛, and 𝐷𝐷𝑚𝑚(𝑛𝑛) denote the set of (different) 
associated vectors of partitions of elements of 𝐻𝐻𝑚𝑚(𝑛𝑛). 
In this paper, we consider the following problem: 
Quantitative Description of Partitions (𝑸𝑸𝑸𝑸𝑸𝑸):  
given an 𝑛𝑛-dimensional integer vector 𝑑𝑑, decide whether 𝑑𝑑 
belongs to 𝐷𝐷𝑚𝑚(𝑛𝑛) (in other words, whether 𝑑𝑑 is the associated 
vector of partitions of an 𝑚𝑚-subset of 𝐸𝐸𝑛𝑛). 
The paper is organized as follows: Section 2 below brings a 
necessary condition for the 𝑄𝑄𝐷𝐷𝑄𝑄 problem by means of 
minimal and maximal ranks of associated vectors. Then it is 
shown that the problem can be reduced to the case of those 
subsets of 𝐸𝐸𝑛𝑛 corresponding to monotone Boolean functions. 
Section 3 addresses complexity questions of the problem. 

2. QUANTITATIVE DESCRIPTION OF
SETS' PARTITIONS
2.1. A necessary condition
We define the rank of an element/vector 𝑑𝑑 = (𝑑𝑑1,⋯ ,𝑑𝑑𝑛𝑛) of 
𝐷𝐷𝑚𝑚(𝑛𝑛) as the sum of its components: 𝑟𝑟(𝑑𝑑) = 𝑑𝑑1 + ⋯+ 𝑑𝑑𝑛𝑛.  
Firstly, we find the maximal possible rank of the associated 
vectors of the elements of 𝐻𝐻𝑚𝑚(𝑛𝑛). For this purpose, we 
present the integer number 𝑚𝑚 in the following canonical form: 

𝑚𝑚 = 𝐶𝐶𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛−1 + ⋯+ 𝐶𝐶𝑛𝑛𝑛𝑛−𝑘𝑘 + 𝛿𝛿, 
where 0 ≤ 𝛿𝛿 < 𝐶𝐶𝑛𝑛𝑛𝑛−𝑘𝑘−1,  and compose the class 𝐻𝐻𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥 ⊆
𝐻𝐻𝑚𝑚(𝑛𝑛) in the following way. Every element of 𝐻𝐻𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥 
contains all vertices of the 𝑛𝑛-th, (𝑛𝑛 − 1)-th, etc. (𝑛𝑛 − 𝑘𝑘)-th 
layers of 𝐸𝐸𝑛𝑛, and also δ vertices from the (𝑛𝑛 − 𝑘𝑘 − 1)-th 
layer. In this manner, elements of 𝐻𝐻𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥 differ from one 
another by the choice of δ vertices only.  Obviously, the 
associated vectors of the elements of 𝐻𝐻𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥 have equal ranks, 
and this is the highest possible rank among all vectors of 
𝐷𝐷𝑚𝑚(𝑛𝑛). Denote this rank by 𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥. 𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥 is calculated as 
follows ([2]):  

𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥 = ∑ (𝑛𝑛 − 𝑖𝑖) ∙ 𝐶𝐶𝑛𝑛𝑛𝑛−𝑖𝑖𝑘𝑘
𝑖𝑖=0 + (𝑛𝑛 − 𝑘𝑘 − 1) ∙ 𝛿𝛿.

Similarly, the class 𝐻𝐻𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛 ⊆ 𝐻𝐻𝑚𝑚(𝑛𝑛) contains all vertices of 
the 0-th, 1st, etc., 𝑘𝑘-th layers of 𝐸𝐸𝑛𝑛, and also δ vertices from 
the (𝑘𝑘 + 1)-th layer. 𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛, the smallest possible rank of the 
associated vectors of elements of 𝐻𝐻𝑚𝑚(𝑛𝑛), can be found by the 
following formula: 
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𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛 = ∑ 𝑖𝑖 ∙ 𝐶𝐶𝑛𝑛𝑖𝑖𝑘𝑘
𝑖𝑖=0 + (𝑘𝑘 + 1) ∙ 𝛿𝛿. 

Thus, we obtain a necessary condition for the 𝑄𝑄𝐷𝐷𝑄𝑄 problem 
given below by Lemma 1: 
Lemma 1. If a given 𝑛𝑛-dimensional integer vector 𝑑𝑑 belongs 
to 𝐷𝐷𝑚𝑚(𝑛𝑛), then: 
∑ 𝑖𝑖 ∙ 𝐶𝐶𝑛𝑛𝑖𝑖𝑘𝑘
𝑖𝑖=0 + (𝑘𝑘 + 1) ∙ 𝛿𝛿 ≤ 𝑟𝑟(𝑑𝑑) ≤ 

 ∑ (𝑛𝑛 − 𝑖𝑖) ∙ 𝐶𝐶𝑛𝑛𝑛𝑛−𝑖𝑖𝑘𝑘
𝑖𝑖=0 + (𝑛𝑛 − 𝑘𝑘 − 1) ∙ 𝛿𝛿. 

To evaluate this condition we need additional analysis and 
estimations on the difference between 𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥 and 𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛, the 
number of elements of 𝐷𝐷𝑚𝑚(𝑛𝑛) depending on 𝑚𝑚, the number of 
vectors of a given rank, etc., - which is a subject of our further 
research. Some preliminary distances and estimates of the 
mentioned type are given in [3]. 

2.2. Problem reduction (using subset 
exchange procedures) 
First we introduce the exchange (or shifting) operations: 𝑆𝑆𝑖𝑖

0_1 
and 𝑆𝑆𝑖𝑖

1_0 in 𝐸𝐸𝑛𝑛.  
Let ℳ ⊆ 𝐸𝐸𝑛𝑛; 𝛼𝛼� and 𝛼𝛼�′ be two vertices of 𝐸𝐸𝑛𝑛, such that 𝛼𝛼� 
belongs to the given subset ℳ of 𝐸𝐸𝑛𝑛, and 𝛼𝛼�′ ∉ ℳ. 
The vertex exchange operation 𝑆𝑆𝑖𝑖

0_1(𝛼𝛼�) performs the 
following: 

- If 𝛼𝛼𝑖𝑖 = 0 in 𝛼𝛼�, and 𝛼𝛼𝑖𝑖′ = 1 in 𝛼𝛼�′, and 𝛼𝛼𝑘𝑘′ = 𝛼𝛼𝑘𝑘 for
all 𝑘𝑘 ≠ 𝑖𝑖 , then 𝛼𝛼� ∈ ℳ is replaced with 𝛼𝛼�′ ∈ 𝐸𝐸𝑛𝑛;

- Otherwise, 𝛼𝛼� remains unchanged.
𝑆𝑆𝑖𝑖
1_0(𝛼𝛼�) operation performs the following: 

- If 𝛼𝛼𝑖𝑖 = 1 in 𝛼𝛼�, and 𝛼𝛼𝑖𝑖′ = 0 in 𝛼𝛼�′, and 𝛼𝛼𝑘𝑘′ = 𝛼𝛼𝑘𝑘 for
all 𝑘𝑘 ≠ 𝑖𝑖 , then 𝛼𝛼� is replaced with 𝛼𝛼�′;

- Otherwise, 𝛼𝛼� remains unchanged.
Let ℳ be an 𝑚𝑚-subset of vertices in 𝐸𝐸𝑛𝑛; and ℳ𝑥𝑥𝑖𝑖=1 and 
ℳ𝑥𝑥𝑖𝑖=0 be corresponding subsets of ℳ in 𝐸𝐸𝑥𝑥𝑖𝑖=1

𝑛𝑛−1   and 𝐸𝐸𝑥𝑥𝑖𝑖=0
𝑛𝑛−1  . 

Operation 𝑆𝑆𝑖𝑖
0_1(ℳ) performs vertex exchange operations 

𝑆𝑆𝑖𝑖
0_1(𝛼𝛼�) over all vertices 𝛼𝛼� of ℳ𝑥𝑥𝑖𝑖=0, and operation 𝑆𝑆𝑖𝑖

1_0(ℳ)
performs vertex exchange operations 𝑆𝑆𝑖𝑖

1_0(𝛼𝛼�) over all vertices 
𝛼𝛼�  of ℳ𝑥𝑥𝑖𝑖=1.  
𝑆𝑆𝑖𝑖
0_1(ℳ) and 𝑆𝑆𝑖𝑖

0_1(ℳ) will be referred to as subset exchange 
operations over the set ℳ in the direction 𝑖𝑖. These operations 
may be applied individually, as well as concurrently because 
of their domains are none intersecting. 
Suppose that 𝑆𝑆𝑖𝑖

0_1(ℳ) and 𝑆𝑆𝑖𝑖
1_0(ℳ) are applied over the set 

ℳ, and let ℳ�  denote the resulting set in 𝐸𝐸𝑛𝑛. Thus: when 
𝑆𝑆𝑖𝑖
0_1(ℳ) is applied, then �ℳ�𝑥𝑥𝑖𝑖=0� ≤ �ℳ𝑥𝑥𝑖𝑖=0�, �ℳ𝑥𝑥𝑖𝑖=1� ≤
�ℳ�𝑥𝑥𝑖𝑖=1� and �ℳ𝑥𝑥𝑖𝑖=0� − �ℳ�𝑥𝑥𝑖𝑖=0� = �ℳ�𝑥𝑥𝑖𝑖=1� − �ℳ𝑥𝑥𝑖𝑖=1�. 
Similar relations are valid for the operation 𝑆𝑆𝑖𝑖

1_0(ℳ). In terms 
of subset ranks we see that the operation 𝑆𝑆𝑖𝑖

0_1(ℳ)  implies the 
rank increase and 𝑆𝑆𝑖𝑖

1_0(ℳ) implies the rank decrease. 
Consecutive implementation in different directions, repeating 
directions many times leads to monotone Boolean functions 
for 𝑆𝑆𝑖𝑖

0_1(ℳ), and to the negations of these functions for 
𝑆𝑆𝑖𝑖
1_0(ℳ). 

When 𝑆𝑆𝑖𝑖
0_1(ℳ) and 𝑆𝑆𝑖𝑖

1_0(ℳ) are applied concurrently, then 
�ℳ𝑥𝑥𝑖𝑖=0�=�ℳ�𝑥𝑥𝑖𝑖=1�, and �ℳ𝑥𝑥𝑖𝑖=1�=�ℳ�𝑥𝑥𝑖𝑖=0�. If �ℳ𝑥𝑥𝑖𝑖=1� = 𝑑𝑑𝑖𝑖  
then �ℳ�𝑥𝑥𝑖𝑖=1� = 𝑚𝑚 − 𝑑𝑑𝑖𝑖, and vice versa. 𝑑𝑑𝑖𝑖 and 𝑚𝑚 − 𝑑𝑑𝑖𝑖 in this 
context are called inversions of each other in the direction 𝑖𝑖 
and with respect to the size 𝑚𝑚. 
Now we define the following relation on the set of all 𝑚𝑚-
subsets 𝐻𝐻𝑚𝑚(𝑛𝑛), denoted by ℛ1:  
𝐻𝐻1ℛ1𝐻𝐻2 (𝐻𝐻1 is in relation ℛ1 with 𝐻𝐻2) if and only if 𝐻𝐻2 can 
be obtained from 𝐻𝐻1 by 𝑘𝑘, 𝑘𝑘 ∈ {0,1,⋯ ,𝑛𝑛} subset exchange 
operations in several directions, where 𝐻𝐻1 and 𝐻𝐻2  are 
elements of 𝐻𝐻𝑚𝑚(𝑛𝑛). 
It is easy to check that the relation ℛ1 obeys the reflexivity, 
symmetricity and transitivity properties, and thus, it is an 

equivalence relation over 𝐻𝐻𝑚𝑚(𝑛𝑛). In this manner, “subset 
exchange” splits 𝐻𝐻𝑚𝑚(𝑛𝑛) into disjoint sets /equivalence 
classes/ 𝐻𝐻�1,𝐻𝐻�2,⋯ ,𝐻𝐻�𝑝𝑝, which cover the whole 𝐻𝐻𝑚𝑚(𝑛𝑛).  
Relation ℛ1 is defined over the set 𝐻𝐻𝑚𝑚(𝑛𝑛) of all 𝑚𝑚-subsets of 
𝐸𝐸𝑛𝑛. Similarly, we can define “inversion” relation over the set 
of all association vectors 𝐷𝐷𝑚𝑚(𝑛𝑛), denoting it by ℛ2: 
𝐷𝐷1ℛ2𝐷𝐷2 (𝐷𝐷1 is in relation ℛ2 with 𝐷𝐷2) if and only if 𝐷𝐷1 can 
be obtained from 𝐷𝐷2 by 𝑘𝑘 (𝑘𝑘 = 0,1,⋯ ,𝑛𝑛) number of 
inversions in different directions, where 𝐷𝐷1 and 𝐷𝐷2 are 
arbitrary elements of 𝐷𝐷𝑚𝑚(𝑛𝑛). 
ℛ2 is an equivalence relation on 𝐷𝐷𝑚𝑚(𝑛𝑛), and thus, it splits 
𝐷𝐷𝑚𝑚(𝑛𝑛) into disjoint sets/equivalence classes 𝐷𝐷�𝑖𝑖1 ,𝐷𝐷�𝑖𝑖2 ,⋯ ,𝐷𝐷�𝑖𝑖𝑞𝑞, 
which cover the whole 𝐷𝐷𝑚𝑚(𝑛𝑛).  
We note that 𝐷𝐷�𝑖𝑖1 ,𝐷𝐷�𝑖𝑖2 ,⋯ ,𝐷𝐷�𝑖𝑖𝑞𝑞 are not arbitrary classes of 
𝐷𝐷𝑚𝑚(𝑛𝑛), they come from 𝐻𝐻�1,𝐻𝐻�2,⋯ ,𝐻𝐻�𝑝𝑝 in the following way. 
Let 𝐷𝐷�𝑗𝑗 denote the class of associated vectors of partitions of 
the elements of 𝐻𝐻�𝑗𝑗, 𝑗𝑗 = 1,⋯𝑝𝑝. There may be coinciding 
classes among 𝐷𝐷�𝑗𝑗 (since different sets may have the same 
associated vector of partitions). Removing the repeated ones, 
we will obtain equivalence classes 𝐷𝐷�𝑖𝑖1 ,𝐷𝐷�𝑖𝑖2 ,⋯ ,𝐷𝐷�𝑖𝑖𝑞𝑞 (𝑞𝑞 ≤ 𝑝𝑝). 
Let 𝑑𝑑 = (𝑑𝑑1 ,𝑑𝑑2,⋯ ,𝑑𝑑𝑛𝑛) belong to some equivalence class 𝐷𝐷�𝑖𝑖𝑗𝑗. 

It is easy to check that �𝐷𝐷�𝑖𝑖𝑗𝑗� = 2𝑘𝑘, where 𝑘𝑘 = |{𝑑𝑑𝑖𝑖|𝑑𝑑𝑖𝑖 ≠
(𝑚𝑚 − 𝑑𝑑𝑖𝑖)}|.  Obviously, 𝑘𝑘 = 𝑛𝑛 for odd 𝑚𝑚. Additional 
quantitative relations are given in [4]. 
Consider an example to interpret the equivalence classes. 
Example 1. 
Let 𝑛𝑛 = 3,𝑚𝑚 = 4. Then 𝐻𝐻4(3), the set of all 4-subsets of 𝐸𝐸3 
consists of 𝐶𝐶23

4 = 70 elements.
There are 11 equivalence classes (according to the relation 
ℛ2) covering 𝐷𝐷4(3), those are: 
𝐷𝐷�𝑖𝑖1 = {(3,3,3), (1,3,3), (3,1,3), (3,3,1), (1,1,3), 
(1,3,1), (3,1,1), (1,1,1)}, �𝐷𝐷�𝑖𝑖1� = 8 
𝐷𝐷�𝑖𝑖2 = {(3,3,2), (1,3,2), (3,1,2), (1,1,2)} , �𝐷𝐷�𝑖𝑖2� = 4 
𝐷𝐷�𝑖𝑖3 = {(3,2,3), (1,2,3), (3,2,1), (1,2,1)} , �𝐷𝐷�𝑖𝑖3� = 4 
𝐷𝐷�𝑖𝑖4 = {(2,3,3), (2,1,3), (2,3,1), (2,1,1)} , �𝐷𝐷�𝑖𝑖4� = 4 
𝐷𝐷�𝑖𝑖5 = {(3,2,2), (1,2,2)} ,  �𝐷𝐷�𝑖𝑖5� = 2 
𝐷𝐷�𝑖𝑖6 = {(2,3,2), (2,1,2)} ,  �𝐷𝐷�𝑖𝑖6� = 2 
𝐷𝐷�𝑖𝑖7 = {(2,2,3), (2,2,1)} ,  �𝐷𝐷�𝑖𝑖7� = 2 
𝐷𝐷�𝑖𝑖8 = {(4,2,2), (0,2,2)} ,  �𝐷𝐷�𝑖𝑖8� = 2 
𝐷𝐷�𝑖𝑖9 = {(2,4,2), (2,0,2)} ,  �𝐷𝐷�𝑖𝑖9� = 2 
𝐷𝐷�𝑖𝑖10 = {(2,2,4), (2,2,0)} ,  �𝐷𝐷�𝑖𝑖10� = 2 
𝐷𝐷�𝑖𝑖11 = {(2,2,2)}, �𝐷𝐷�𝑖𝑖11� = 1. 
Though, the number of equivalence classes 𝐻𝐻�𝑗𝑗 are much more. 
For example, the same class 𝐷𝐷�𝑖𝑖11 = {(2,2,2)} corresponds to 
different 𝐻𝐻�𝑗𝑗 classes (in this case each of these classes consists 
of the unique set); those are: 
{(000), (001), (110), (111)} ,  
{(000), (011), (101), (111)} , 
{(000), (011), (100), (111)} , 
{(000), (011), (101), (110)} , 
{(001), (010), (100), (111)} , 
{(001), (010), (101), (110)} . 
For every class 𝐷𝐷�𝑖𝑖𝑗𝑗 if we find any element of the class, then 
we will obtain also all its elements. It remains only to identify 
/to find/ a certain element, and instead of the entire class, 
consider that one. 
Notice that every class 𝐷𝐷�𝑖𝑖𝑗𝑗 contains a unique vector with all ≥
⌈𝑚𝑚/2⌉ components, and a unique vector with all ≤ ⌊𝑚𝑚/2⌋ 
components. Each of these vectors can play the role of so 
called “generating element” for the whole class 𝐷𝐷�𝑖𝑖𝑗𝑗. 
Therefore, we can restrict attention with the vectors with all 
≥ ⌈𝑚𝑚/2⌉ components or with all ≤ ⌊𝑚𝑚/2⌋ components. 
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Without loss of generality, we will consider the case of all ≥
⌈𝑚𝑚/2⌉ components; further we will refer to them as 
generating elements. 
In Example 1 the generating elements are: 
(3,3,3) for  𝐷𝐷�𝑖𝑖1,  
(3,3,2) for  𝐷𝐷�𝑖𝑖2, (3,2,3) for  𝐷𝐷�𝑖𝑖3, (2,3,3) for 𝐷𝐷�𝑖𝑖4,   
(3,2,2) for 𝐷𝐷�𝑖𝑖5, (2,3,2) for 𝐷𝐷�𝑖𝑖6, (2,2,3) for 𝐷𝐷�𝑖𝑖7, 
(4,2,2) for 𝐷𝐷�𝑖𝑖8, (2,4,2) for 𝐷𝐷�𝑖𝑖9, (2,2,4) for 𝐷𝐷�𝑖𝑖10 
(2,2,2) for  𝐷𝐷�𝑖𝑖11.  
Let  𝐷𝐷�𝑚𝑚(𝑛𝑛) denote the set of generating elements of all 𝐷𝐷�𝑖𝑖𝑗𝑗 
classes (in other words, a subset of 𝐷𝐷𝑚𝑚(𝑛𝑛) consisting of all 
vectors with all ≥ ⌈𝑚𝑚/2⌉ components). In these terms, the 
problem 𝑄𝑄𝐷𝐷𝑄𝑄 can be reduced to the following problem: 
Reduced Quantitative Description (𝑹𝑹𝑸𝑸𝑸𝑸):  
Given 𝑛𝑛-dimensional integer vector �̅�𝑑 with all ≥ ⌈𝑚𝑚/2⌉ 
components; determine whether �̅�𝑑 belongs to 𝐷𝐷�𝑚𝑚(𝑛𝑛) (in other 
words, is �̅�𝑑 generating element for some equivalency class 
𝐷𝐷�𝑖𝑖𝑗𝑗)? 

2.3. Further reduction of the problem 
(using monotone Boolean functions) 
In this section, we consider further reduction of the problem 
and prove that among all generating elements it suffices to 
find only those corresponding to monotone Boolean 
functions.  
𝑓𝑓(𝑥𝑥1, 𝑥𝑥2,⋯ ,𝑥𝑥𝑛𝑛):𝐸𝐸𝑛𝑛 → {0,1} function is called a Boolean 
function.  
Define a component-wise partial order on 𝐸𝐸𝑛𝑛: (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛) ≼
(𝛽𝛽1 ,⋯ ,𝛽𝛽𝑛𝑛) (vertex (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛) precedes vertex (𝛽𝛽1,⋯ ,𝛽𝛽𝑛𝑛)) 
if 𝛼𝛼𝑖𝑖 ≤ 𝛽𝛽𝑖𝑖  for 𝑖𝑖 = 1,⋯ ,𝑛𝑛.  
Vertex (𝛼𝛼1,⋯ ,𝛼𝛼𝑗𝑗−1,𝛼𝛼𝑗𝑗 = 1,𝛼𝛼𝑗𝑗+1,⋯ ,𝛼𝛼𝑛𝑛) of 𝐸𝐸𝑛𝑛 is called an 
upper neighbor of the vertex (𝛼𝛼1,⋯ ,𝛼𝛼𝑗𝑗−1,𝛼𝛼𝑗𝑗 =
0,𝛼𝛼𝑗𝑗+1,⋯ ,𝛼𝛼𝑛𝑛) by the 𝑗𝑗-th direction. 
Boolean function 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛) is monotone if for arbitrary 
(𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛) and (𝛽𝛽1,⋯ ,𝛽𝛽𝑛𝑛) vertices of 𝐸𝐸𝑛𝑛, (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛) ≼
(𝛽𝛽1 ,⋯ ,𝛽𝛽𝑛𝑛) implies 𝑓𝑓(𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛)  ≤ 𝑓𝑓(𝛽𝛽1 ,⋯ ,𝛽𝛽𝑛𝑛). 
𝛼𝛼1 ∈ 𝐸𝐸𝑛𝑛 is called a lower unit of 𝑓𝑓, if 𝑓𝑓(𝛼𝛼1) = 1, and 𝑓𝑓(𝛼𝛼) =
0 for all 𝛼𝛼 with 𝛼𝛼 ≼ 𝛼𝛼1. 𝛼𝛼0 ∈ 𝐸𝐸𝑛𝑛 is called an upper zero of 𝑓𝑓, 
if 𝑓𝑓(𝛼𝛼0) = 0, and 𝑓𝑓(𝛼𝛼) = 1 for all 𝛼𝛼 with 𝛼𝛼0 ≼ 𝛼𝛼. 
It follows from the definition that if a monotone Boolean 
function accepts the value “1” on some vertex (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛) of 
𝐸𝐸𝑛𝑛, then it accepts the value “1” also on all upper neighbors 
of (𝛼𝛼1,⋯ ,𝛼𝛼𝑛𝑛). 
Each Boolean function can be presented geometrically on the 
𝑛𝑛-dimensional unit cube by distinguishing those vertices of 
𝐸𝐸𝑛𝑛, in which the function accepts the value “1”. Thus, 
monotone Boolean functions compose a specific class of 
subsets in 𝐸𝐸𝑛𝑛; let 𝑀𝑀�𝑚𝑚(𝑛𝑛) denote the set of all 𝑚𝑚-subsets of 𝐸𝐸𝑛𝑛 
corresponding to monotone Boolean functions, which have 𝑚𝑚 
values “1”; and let 𝐷𝐷𝑚𝑚𝑀𝑀�(𝑛𝑛) denote the set of associated vectors 
of their elements.   
The following lemma states that 𝐷𝐷𝑚𝑚𝑀𝑀�(𝑛𝑛) ⊆ 𝐷𝐷�𝑚𝑚(𝑛𝑛). 
Lemma 2. If �̂�𝑑 = (�̂�𝑑1,⋯ , �̂�𝑑𝑛𝑛) ∈ 𝐷𝐷𝑚𝑚𝑀𝑀�(𝑛𝑛) then �̂�𝑑𝑖𝑖 ≥ ⌈𝑚𝑚/2⌉ for 
𝑖𝑖 = 1,⋯ ,𝑛𝑛. 
Proof. Let �̂�𝑑 = (�̂�𝑑1,⋯ , �̂�𝑑𝑛𝑛) ∈ 𝐷𝐷𝑚𝑚𝑀𝑀�(𝑛𝑛) and 𝑀𝑀�  be a set from 
𝑀𝑀�𝑚𝑚(𝑛𝑛) the associated vector of which is �̂�𝑑. Suppose by a 
contradictory assumption that �̂�𝑑𝑗𝑗 < ⌈𝑚𝑚/2⌉ for some 𝑗𝑗. Then 
there must be a vertex (𝛼𝛼1,⋯ ,𝛼𝛼𝑗𝑗−1,𝛼𝛼𝑗𝑗 = 0,𝛼𝛼𝑗𝑗+1,⋯ ,𝛼𝛼𝑛𝑛) in 
𝑀𝑀�  such that the vertex (𝛼𝛼1,⋯ ,𝛼𝛼𝑗𝑗−1,𝛼𝛼𝑗𝑗 = 1,𝛼𝛼𝑗𝑗+1,⋯ ,𝛼𝛼𝑛𝑛) 
does not belong to 𝑀𝑀� . But in this case 𝑀𝑀�  cannot be the set of 
values “1” of any monotone Boolean function. Thus, �̂�𝑑𝑗𝑗 ≥
⌈𝑚𝑚/2⌉. □ 

Theorem 1. Given an 𝑛𝑛-dimensional integer vector �̅�𝑑 with all 
components  ≥ ⌈𝑚𝑚/2⌉. �̅�𝑑 belongs to 𝐷𝐷�𝑚𝑚(𝑛𝑛) if and only if there 
exists �̂�𝑑 ∈ 𝐷𝐷𝑚𝑚𝑀𝑀�(𝑛𝑛) such that �̅�𝑑  ≤ �̂�𝑑. 
Proof.  
Necessity 
Suppose that �̅�𝑑 is a vector satisfying the theorem condition, 
and �̅�𝑑  ∈ 𝐷𝐷�𝑚𝑚(𝑛𝑛). If �̅�𝑑  ∈ 𝐷𝐷𝑚𝑚𝑀𝑀�(𝑛𝑛), then the necessity part is 
proved. Now, let us assume that �̅�𝑑 ∉ 𝐷𝐷𝑚𝑚𝑀𝑀�(𝑛𝑛); it follows that 
𝑀𝑀, a corresponding to �̅�𝑑 set in 𝐸𝐸𝑛𝑛, does not belong to 𝑀𝑀�𝑚𝑚(𝑛𝑛). 
Applying 𝑆𝑆𝑖𝑖

0_1(𝑀𝑀) exchange operations consecutively for all 
directions 𝑖𝑖, will lead to a set 𝑀𝑀�  from 𝑀𝑀�𝑚𝑚(𝑛𝑛) with an 
associated vector �̂�𝑑 greater than �̅�𝑑. 
Sufficiency 
Suppose that �̅�𝑑 is a vector satisfying the theorem condition, 
and there exists �̂�𝑑 ∈ 𝐷𝐷𝑚𝑚𝑀𝑀�(𝑛𝑛) such that �̅�𝑑  ≤ �̂�𝑑. Let 𝑀𝑀�  denote a 
corresponding to �̂�𝑑 set from 𝑀𝑀�𝑚𝑚(𝑛𝑛). We have to prove that �̅�𝑑 
is the associated vector for some 𝑚𝑚-subset of 𝐸𝐸𝑛𝑛. Suppose that 
�̅�𝑑𝑗𝑗 < �̂�𝑑𝑗𝑗 for some 𝑗𝑗. Split 𝐸𝐸𝑛𝑛 according to the variable 𝑥𝑥𝑗𝑗  
(𝑀𝑀�𝑥𝑥𝑗𝑗=1 and 𝑀𝑀�𝑥𝑥𝑗𝑗=0 will denote the corresponding subsets of 
𝑀𝑀�). We need to prove that there are at least �̂�𝑑𝑗𝑗 − �̅�𝑑𝑗𝑗 vertices 
in 𝑀𝑀�𝑥𝑥𝑗𝑗=1, which can be moved into 𝑀𝑀�𝑥𝑥𝑗𝑗=0 by applying 𝑆𝑆𝑗𝑗
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vertex exchange operations.   Suppose by a contradictory 
assumption that the number of such vertices is 𝑘𝑘 , and 𝑘𝑘 <
�̂�𝑑𝑗𝑗 − �̅�𝑑𝑗𝑗 . It follows that �̂�𝑑𝑗𝑗 − 𝑘𝑘 = ⌊𝑚𝑚/2⌋. Thus, on the one 
hand, �̅�𝑑𝑗𝑗 < �̂�𝑑𝑗𝑗 − 𝑘𝑘, and on the other hand, ⌈𝑚𝑚/2⌉ ≤ �̅�𝑑𝑗𝑗, and 
then:  ⌈𝑚𝑚/2⌉ < �̂�𝑑𝑗𝑗 − 𝑘𝑘. This contradiction completes the 
proof. □ 
Theorem 1 implies that the problem 𝑅𝑅𝑄𝑄𝐷𝐷 can be reduced to 
the following problem:  
Monotone Quantitative Description (𝑴𝑴𝑸𝑸𝑸𝑸):  
Given 𝑛𝑛-dimensional integer vector �̅�𝑑 with all ≥ ⌈𝑚𝑚/2⌉ 
components; does there exist �̂�𝑑 from 𝐷𝐷𝑚𝑚𝑀𝑀�(𝑛𝑛) such that �̅�𝑑  ≤ �̂�𝑑? 
Consider again the Example 1. 
Among all generating elements only the following vectors 
correspond to monotone Boolean functions: 
(3,3,3) for  𝐷𝐷�𝑖𝑖1,  
(4,2,2) for 𝐷𝐷�𝑖𝑖8, (2,4,2) for 𝐷𝐷�𝑖𝑖9, (2,2,4) for 𝐷𝐷�𝑖𝑖10. 
Additionally, we can take into account that vectors (4,2,2), 
(2,4,2), and (2,2,4) correspond to the isomorphic monotone 
Boolean functions, which have the following sets of “1”s:  
𝑀𝑀1 = {(100), (101), (110), (111)}, 
𝑀𝑀2 = {(010), (011), (110), (111)},  
𝑀𝑀3 = {(001), (011), (101), (111)}, 
and thus, it suffices to consider only one of those vectors. 
Concluding, - to obtain the associated vectors for all 70 sets 
of 𝐻𝐻4(3), it is sufficient to find only two associated vectors: 
(3,3,3) and (4,2,2). 

Concluding this section, it is worth mentioning the following 
findings of Theorem 1.  
Let an integer number 𝑚𝑚 be presented in the following form: 
𝑚𝑚 = 2𝑘𝑘1 + 2𝑘𝑘2 + ⋯+ 2𝑘𝑘𝑝𝑝, where 𝑘𝑘1 > 𝑘𝑘2 > ⋯ > 𝑘𝑘𝑝𝑝 ≥ 0. 
It follows that the lowest layer of  𝐸𝐸𝑛𝑛 that can contain lower 
units of a monotone Boolean function from 𝑀𝑀�𝑚𝑚(𝑛𝑛), is the 
(𝑛𝑛 − 𝑘𝑘1)-th layer. In this manner, instead of looking for an 𝑚𝑚-
subset of vertices thorough the whole 𝐸𝐸𝑛𝑛, it suffices to look 
for an 𝑚𝑚-subset of vertices on the (𝑛𝑛 − 𝑘𝑘1)-th  and higher 
layers. 

3. COMPLEXITY OF THE
QUANTITATIVE DESCRIPTION
3.1. Relation with hypergraphs
Let [𝑛𝑛] = {1,2,⋯ ,𝑛𝑛}. Consider the power set of [𝑛𝑛] (denoted 
by 𝒫𝒫([𝑛𝑛])) and its partial order by inclusion: let 𝑎𝑎 and 𝑏𝑏 be 
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arbitrary subsets of [𝑛𝑛]; 𝑎𝑎 precedes 𝑏𝑏, if 𝑎𝑎 ⊆ 𝑏𝑏. Identify 
subsets of [𝑛𝑛] with binary vectors of length 𝑛𝑛 such that the 𝑖𝑖-
th entry equals “1” if and only if the 𝑖𝑖-th element of [𝑛𝑛] is 
included in the subset. In this manner, 1-1 correspondence 
between 𝒫𝒫([𝑛𝑛]) and 𝐸𝐸𝑛𝑛 is established. Each ℳ ⊆ 𝐸𝐸𝑛𝑛 can be 
identified with an element of 𝒫𝒫([𝑛𝑛]), or in other words, with 
a simple hypergraph 1 ℋ on vertex set [𝑛𝑛], the edges of which 
determined by the elements of  ℳ. Then the degree of the 𝑖𝑖-
th vertex of ℋ is equal to �ℳ𝑥𝑥𝑖𝑖=1�; the associated vector of 
partitions of ℳ corresponds to the degree sequence of ℋ.  
𝐻𝐻𝑚𝑚(𝑛𝑛) will correspond to the set of all simple hypergraphs, 
with vertex set [𝑛𝑛] = {1,2,⋯ ,𝑛𝑛} and with 𝑚𝑚 hyperedges,  and 
𝐷𝐷𝑚𝑚(𝑛𝑛) will be the set of all degree sequences of elements of 
𝐻𝐻𝑚𝑚(𝑛𝑛). The 𝑄𝑄𝐷𝐷𝑄𝑄 problem in terms of hypergraphs is 
equivalent to the hypergraph degree sequence problem: does 
there exist a simple hypergraph by a given degree sequence? 
This is a well-known open problem in the graph theory, stated 
in [5]. Recently the case of 𝑘𝑘-uniform hypergraphs has been 
solved - it is proved that the existence problem for simple 3-
uniform hypergraphs is NP-complete [6]. 
3.2. Complexity 
In this section, we prove that the 𝑄𝑄𝐷𝐷𝑄𝑄 problem is NP-hard. 
Recall the class 𝐻𝐻𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥 of 𝑚𝑚-subsets of 𝐸𝐸𝑛𝑛 (defined in Section 
2) and calculate the components of associated vectors of
elements of 𝐻𝐻𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥. Each component can be presented as a
sum of two summands. The first summand is constant for each 
component and comes from the vertices of the 𝑛𝑛-th, (𝑛𝑛 − 1)-
th, etc., (𝑛𝑛 − 𝑘𝑘)-th layers of 𝐸𝐸𝑛𝑛, and is equals to ([2]):

∑ (𝑛𝑛−𝑗𝑗)∙𝐶𝐶𝑛𝑛
𝑛𝑛−𝑗𝑗

𝑛𝑛
𝑘𝑘
𝑗𝑗=0 = ∑ (𝑛𝑛−𝑗𝑗)∙𝑛𝑛!

𝑛𝑛∙(𝑛𝑛−𝑗𝑗)!∙𝑗𝑗!
𝑘𝑘
𝑗𝑗=0 = ∑ 𝐶𝐶𝑛𝑛−1

𝑛𝑛−𝑗𝑗−1𝑘𝑘
𝑗𝑗=0  . 

The second summand comes from 𝛿𝛿 vertices of the 𝐶𝐶𝑛𝑛𝑛𝑛−𝑘𝑘−1 
layer. If denote by 𝑠𝑠𝑖𝑖 the value of the 𝑖𝑖-th component, then 
(𝑠𝑠1,⋯ , 𝑠𝑠𝑛𝑛) will correspond to the associated vector of 
partitions of 𝛿𝛿-set from the (𝑛𝑛 − 𝑘𝑘 − 1)-th layer of 𝐸𝐸𝑛𝑛. 
Thus, the following statement holds: 
Theorem 2. Let 𝑚𝑚 = 𝐶𝐶𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛−1 + ⋯+ 𝐶𝐶𝑛𝑛𝑛𝑛−𝑘𝑘 + 𝛿𝛿, 0 ≤ 𝛿𝛿 <
𝐶𝐶𝑛𝑛𝑛𝑛−𝑘𝑘−1. An 𝑛𝑛-dimensional integer vector (𝑑𝑑1,⋯ ,𝑑𝑑𝑛𝑛) is the 
associated vector of partitions for some set of 𝐻𝐻𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥 (for the 
given 𝑚𝑚) if and only if (𝑠𝑠1,⋯ , 𝑠𝑠𝑛𝑛) is the associated vector for 
some 𝛿𝛿-set of vertices from the (𝑛𝑛 − 𝑘𝑘 − 1)-th layer of 𝐸𝐸𝑛𝑛, 
where 𝑠𝑠𝑖𝑖 = 𝑑𝑑𝑖𝑖 − ∑ 𝐶𝐶𝑛𝑛−1

𝑛𝑛−𝑗𝑗−1𝑘𝑘
𝑗𝑗=0  for all 𝑖𝑖 = 1,⋯ ,𝑛𝑛. 

For the case of 𝑘𝑘 = 1 we formulate the following statement: 
Theorem 3. Let 𝑚𝑚 = 𝐶𝐶𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛−1 + 𝛿𝛿, where 0 < 𝛿𝛿 ≤ 𝐶𝐶𝑛𝑛𝑛𝑛−2. 
An 𝑛𝑛-dimensional integer vector (𝑑𝑑1 ,⋯ ,𝑑𝑑𝑛𝑛) is the associated 
vector of partitions for some set of 𝐻𝐻𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥 (for the given 𝑚𝑚) if 
and only if each 𝑑𝑑𝑖𝑖 can be presented as: 𝑑𝑑𝑖𝑖 = 𝑛𝑛 + 𝑠𝑠𝑖𝑖 , where 
∑ 𝑠𝑠𝑖𝑖𝑛𝑛
1=1 = (𝑛𝑛 − 2)𝛿𝛿, and (𝛿𝛿 − 𝑠𝑠1,⋯ , 𝛿𝛿 − 𝑠𝑠𝑛𝑛) permutated in 

decreasing order: 𝛿𝛿 − 𝑠𝑠𝑡𝑡1 ≥ ⋯ ≥ 𝛿𝛿 − 𝑠𝑠𝑡𝑡𝑛𝑛, satisfies the 
following condition (Erdos-Gallai inequalities): 
∑ (𝛿𝛿 − 𝑠𝑠𝑡𝑡𝑖𝑖
𝑗𝑗
𝑖𝑖=1 ) − ∑ (𝛿𝛿 − 𝑠𝑠𝑡𝑡𝑖𝑖) ≤ 𝑗𝑗(𝑙𝑙 − 1)𝑛𝑛

𝑖𝑖=𝑙𝑙+1 , 1 ≤ 𝑗𝑗 ≤ 𝑙𝑙 ≤ 𝑛𝑛. 

Proof follows from Theorem 2 and from the Erdos-Gallai 
theorem ([7], [8]). □ 

Note that deciding whether a given vector (𝑠𝑠1,⋯ , 𝑠𝑠𝑛𝑛) is the 
associated vector for some 𝛿𝛿-set of vertices from the given 
layer of 𝐸𝐸𝑛𝑛 is equivalent to the hypergraph degree sequence 
problem for uniform hypergraphs. Therefore, it follows from 
Theorem 2 and Theorem 3 that the problem of deciding 
whether a given 𝑛𝑛-dimensional integer vector (𝑑𝑑1,⋯ ,𝑑𝑑𝑛𝑛) is 

1 Let 𝑉𝑉 = {𝑣𝑣1,⋯ , 𝑣𝑣𝑛𝑛} be a finite set. A hypergraph 𝐻𝐻 = {𝐸𝐸1,⋯ ,𝐸𝐸𝑚𝑚} 
on 𝑉𝑉 is a family of subsets 𝐸𝐸𝑖𝑖 ⊆ 𝑉𝑉, 𝑖𝑖 = 1,⋯ ,𝑚𝑚. 𝑣𝑣1,⋯ , 𝑣𝑣𝑛𝑛 are called 
vertices of the hypergraph, and 𝐸𝐸1,⋯ ,𝐸𝐸𝑚𝑚 are hyper-edges. 
Hypergraph is 𝑟𝑟-uniform if each of its hyper-edges contains exactly 𝑟𝑟 
elements.  

an associated vector for some set of 𝐻𝐻𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥 is NP-complete for 
𝑚𝑚 > 𝐶𝐶𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛−1 + 𝐶𝐶𝑛𝑛𝑛𝑛−2, and belongs to the complexity class 
𝑄𝑄 for 𝑚𝑚 ≤ 𝐶𝐶𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛−1 + 𝐶𝐶𝑛𝑛𝑛𝑛−2. 

Theorem 4. Let 𝑚𝑚 = 𝐶𝐶𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛−1 + ⋯+ 𝐶𝐶𝑛𝑛𝑛𝑛−𝑘𝑘 + 𝛿𝛿, 0 < 𝛿𝛿 ≤
𝐶𝐶𝑛𝑛𝑛𝑛−𝑘𝑘−1. The problem 𝑄𝑄𝐷𝐷𝑄𝑄 is NP-hard for 𝑘𝑘 ≥ 2. 
Proof. 
The input of the problem 𝑄𝑄𝐷𝐷𝑄𝑄 is an 𝑛𝑛-dimensional integer 
vector (𝑑𝑑1,⋯ ,𝑑𝑑𝑛𝑛). A solution/certificate for 𝑄𝑄𝐷𝐷𝑄𝑄 can be an 
𝑚𝑚-subset of vertices of 𝐸𝐸𝑛𝑛 (where each vertex is an 𝑛𝑛-
dimensional binary vector). Since 𝑚𝑚 is an arbitrary integer 
less than 2𝑛𝑛, we cannot provide that the solution can be 
checked in polynomial time.  
Now we prove that (𝑛𝑛 − 𝑘𝑘 − 1)-uniform hypergraph degree 
sequence problem can be reduced to 𝑄𝑄𝐷𝐷𝑄𝑄 in polynomial time. 
First we notice that 𝐻𝐻𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥 is the only class of 𝑚𝑚-subsets with 
the associated vectors of the rank 𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥 = ∑ (𝑛𝑛 − 𝑖𝑖) ∙𝑘𝑘

𝑖𝑖=0
𝐶𝐶𝑛𝑛𝑛𝑛−𝑖𝑖 + (𝑛𝑛 − 𝑘𝑘 − 1) ∙ 𝛿𝛿. Therefore, the problem of deciding 
whether a given 𝑛𝑛-dimensional integer vector is an associated 
vector for some set of 𝐻𝐻𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥, can be considered as a particular 
case of 𝑄𝑄𝐷𝐷𝑄𝑄, formulated in the following way: given an 𝑛𝑛-
dimensional integer vector 𝑑𝑑 such that the sum of its 
components is equal to  𝑟𝑟𝑚𝑚𝑟𝑟𝑥𝑥; decide whether 𝑑𝑑 belongs to 
𝐷𝐷𝑚𝑚(𝑛𝑛).  
On the other hand it follows from Theorem 2 that the problem 
of deciding whether the given 𝑛𝑛-dimensional integer vector is 
an associated vector for some set from the given layer of 𝐸𝐸𝑛𝑛 
is also a particular case of 𝑄𝑄𝐷𝐷𝑄𝑄. But this is equivalent to the 
(𝑛𝑛 − 𝑘𝑘 − 1)-uniform hypergraph degree sequence problem, 
which completes the proof. □ 
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Hypergraph is simple if all hyper-edges are different. Degree 𝑑𝑑𝑗𝑗 of 
vertex  𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉 is the number of hyperedges containing 𝑣𝑣𝑗𝑗 . The 
sequence 𝑑𝑑(𝐻𝐻) = {𝑑𝑑1,⋯ ,𝑑𝑑𝑛𝑛}  consisting of degrees of vertices of 
hypergraph 𝐻𝐻 is called a hypergraph degree sequence. 
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