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ABSTRACT 
In this paper, we defined a new logical organization of a 

group of memory instances of the same size and structure, 

called a memory system (MS). A few scrambling types 

defined earlier for conventional SRAM memory instances 

are extended for MS that are widely used nowadays in 

semiconductor industry. It is observed that the defined 

scrambling types may increase the efficiency of solving 

several problems of test and repair connected with memory 

systems. 
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1. INTRODUCTION
Nowadays System-on-Chips (SoCs) contain numerous 

functional blocks and the most prevailing among them are 

the memories. The memories in SoC can have different sizes 

from a small size (a few words) up to big sizes (a few 

Gigabytes) of cells (data storages). The working speed 

(frequency) of an MS is also different and depends on the 

functionality of the memory block in an SoC. They can be 

small but very fast register files, different level caches (L1 to 

L3) or big but slow storages for the program data, graphical 

information, etc. In SoCs, the memories of high performance 

are usually implemented based on the Static Random-Access 

Memories (SRAM). In current technologies, an SRAM is the 

highest frequency memory, and that is the reason of widely 

using SRAMs in different embedded functional blocks of 

SoCs.  

     A memory instance is typically implemented as an array 

of storage cells of regular structure. Each cell stores a 

discrete bit “0” or “1” of information. Memory control block 

and column/row decoding logic map an externally provided 

address into a selected pattern of cells. The selected cells can 

be either written into or read from, depending on an external 

command Write or Read. 

     To test the memory instance, a test engine writes/reads 

and then compares the predefined data pattern (DP) with the 

one at a given address location.  Efficiency of the memory 

instance testing highly depends on the correct usage of the 

structural information (“scrambling”) of the memory 

instance [1]. The address and the data scrambling of the 

memory instance are important approaches for increasing the 

efficiency of the memory testing [2]. The different 

addressing methods such as: Regular Up/Down, Incremental 

Up/Down, Pop-Up/Down etc.   and different (mainly 16) 

Data Background (DB) types: Solid “0”/”1”, Double 

column, Double rows, Checkerboard, Bit-line 

Checkerboard, etc. (see in [2]) are used as patterns during the 

testing of the memory instance [1], [2] with a set of test 

algorithms. We want to mention that the Bit-line 

Checkerboard BP is constructed based on the Bit-Line and 

Row scramble information of the memory instance and that 

is why topological Bit-line Checkerboard provides the 

highest coverage of the memory testing [1], [2]. By 

considering this, extraction of the complete and verified 

scramble information of the memory compiler becomes a 

very important task [3]-[5] for testing and many other 

applications, such as memory repair, fault/defect diagnosis, 

fault analysis, etc.  

Another feature of the structure of embedded memories in 

SoC is that they are usually constructed not based on one 

instance only but usually on several instances of the 

memory. This approach provides [6], high performance of 

the memory, as well as higher flexibility during the physical 

implementation (placement and routing) in GDS of an SoC.  

In this extended abstract, based on the developments of 

technology and emergence of new structural/hierarchical 

organizations of sets of high numbers of memory instances 

in an SoC, we found it relevant to introduce new definitions 

for the new structural organizations of memory instances, 

naming them as memory systems. 

2. MEMORY SYSTEMS
The Memory System (MS) is a group of (usually, 

homogeneous) memory instances (i.e., of the same size), 

such as two or three levels of cache memory of CPUs 

(widely known as L1 to L3 caches), the register files of 

different types of controllers, the huge graphical memories, 

the local caches between a fast bus and a low performance 

unit, the reconfigurable Jenga CPU cache memory system 

[3], [6], etc. All the examples mentioned above are a few 

examples of embedded MS implementation. 

We call a logical memory unit/module that is implemented 

by means of several memory instances as a Memory System. 

Figure 1 depicts an example of a simple MS that contains n x 

m memory instances and has a form of a matrix of regular 

memory instances of the same size. It is convenient to 

consider it as a matrix or an array of cells of the size m x n 

where each cell is a memory instance of a given size. Thus, 

an MS is a direct and logical extension of the notion of a 

conventional memory instance. An MS has a regular 

structure, consisting of a group of memory instances of 

regular and homogeneous structure. In Figure 1, ADR is the 

logical Address bus of MS, MCS is the set of MS Control 

Signals, Power is the set of power signals of MS, DATA is 

the Data Bus of MS, Mij, i=1,…n, j=1,…,m, are the memory 

instances included in MS. But, however, it should be noted 

that, in general, the form of an MS may be of other forms as 

well, not only a matrix. Also, the buses in MS may be not 

only functional but also test buses (see [6]).  

The functionality of an MS could be observed as a memory 

logical unit, and it could be presented as a black box as well. 
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At the same time, availability of the physical structure 

information (scrambling) of MS is very important for some 

applications such as: 1. the Memory test and repair, 2. Defect 

analysis and diagnosis, 3. Redundancy planning and sharing 

in the MS, 5. Register sharing for MS faults, 6. MS Fault 

analysis, calculation of physical/logical coordinates of a 

faulty cell in the memory array, etc. As in the case for a 

memory instance, the physical structure and scramble of MS 

are very important for the listed above, as well as many other 

applications (see e.g., [8] - automated extraction of 

scrambling types, [9] – defect injection flow). 

3. SCRAMBLING TYPES (PRIMITIVES)

IN SRAM MEMORY COMPILERS
A memory compiler usually contains a GDS (Graphic Data 

System) file as a geometrical representation of the memory 

structural model. This model is a detailed description of the 

memory and naturally has a very large volume of megabytes 

of information. To develop algorithms for solution of 

different problems connected with memory design & test, it 

was previously accepted widely to analyze the GDS   model 

of the memory. Due to the necessity of high computational 

resources connected with exploration and analysis of the 

GDS file with detailed and complete information on the 

memory structure the problems such as development of test 

algorithms, background pattern extraction for topological 

checkerboard (or other types), finding physical coordinates 

or location of defective cells, physical bitmap viewing of 

defective cells in the memory array, structural changes in the 

memory after its repair by redundant elements, error 

correction based on error correction codes, etc., required 

excessive time for handling of GDS files when considering 

large memory compilers.  

GDS is a binary format for representation of planar 

geometric shapes, text labels and some other information in a 

hierarchical form. It reflects the physical layout (Integrated 

circuit layout), also known as IC layout or IC mask layout, 

of an integrated circuit in terms of planar geometric shapes 

that correspond to shapes drawn on photomasks used in 

semiconductor device fabrication. Originally, GDS was 

designed as a format of data files used to control integrated 

circuit photomask. Despite its limited set of features and low 

data density, it was ubiquitously used for transfer of IC 

layout data between design tools from different vendors 

which operated with proprietary data formats. GDS files are 

considered as final output of the IC design cycle and are 

passed to IC foundries for IC fabrication.  

We proposed (see [3], [4]) a new approach to develop 

memory models of sufficiently simple structure than the 

GDS file for consideration of different problems. We have 

extracted several structural primitives from the layout 

corresponding to the GDS file constituting a basis for 

construction of different memory models of different 

complexity with respect to the information contained in the 

GDS. By selecting different subsets of structural 

“primitives” (scrambling types) (see [4]) we constructed 

different memory models. In dependence on the problem 

considered, the memory model may be much simple than the 

GDS and the time complexity for exploration and analysis of 

the simple structural model of the memory becomes 

significantly smaller than the one necessary for exploration 

and analysis of the whole GDS. This approach allows 

significant reduction of time necessary for extensive 

simulations.  

In [2], the authors described the importance of the usage of 

address and data scrambling. They indicated the importance 

of scrambling information for testing issues and defined 16 

different Data Backgrounds and suggested to use them with 

a set of test algorithms applied several times with different 

DPs to increase the fault coverage of test algorithms. They 

have done experiments on several March algorithms and 

experimentally showed that scrambling has significant 

impact on the fault coverage of the test algorithms by 

increasing it up to 35%. In [4], we have defined several other 

scrambling types corresponding to our visual observation of 

hundreds of GDS files of contemporary memory compilers. 

Finally, we developed a tool for automated generation of 

different memory models by selecting the necessary subset 

of structural primitives from the complete set of structural 

primitives from the basis. In [3], we defined a procedure 

called SIV (Scrambling Information Verification) tool for 

automated verification of the scrambling information 

generated automatically by means of the Scramble 

Information Generator (SIG) tool developed in [4]. Shortly, 

the tool compares the scrambling information with respect to 

the GDS file of the compiler and thus verifies the correctness 

of its generation by the SIG tool. 

Each memory model has two basic forms for representation: 

logical and physical. Those transformations can be described 

in many formats, for example, a TCL procedure. The set of 

all TCL procedures, corresponding to all transformations 

from logical to physical and from physical to logical, are 

described in a database, called the Scrambling Library [4]. 

When a specific memory model is selected the 

corresponding scrambling types with their TCL procedures 

are activated by the tool.  

Both forms, the logical and physical, are important and have 

their range of application. The logical form is used for outer 

representation of the memory model which can be different 

from the inner representation of the physical form of the 

model. In addition to convenience for using the logical form 

it may have also other purposes as well, e.g., IP protection to 

veil the main structural features of the memory from 

customers. The difference between logical structure of the 

memory seen from outside and internal physical structure is 

named scrambling. In other words, for example, address 

scrambling means that logically adjacent cells with logically 

adjacent addresses may not be physically adjacent. For 

testing the memory to detect certain faults, the test algorithm 

which applies read and write operations to the memory cells 

(words) often needs to allocate specific data on physically 

neighboring cells (words). Due to the unavailability of the 

scrambling information, the customer is often forced to 

apply different data background patterns with the test 

algorithm to compensate for the effects of scrambling. Often 

scrambling is introduced intentionally for physical purposes 
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to improve the electrical characteristics of the design, 

geometrical optimization, address decoder optimization, for 

area optimization (sharing cell contacts and well area) (see 

[3], [4]), speed, robustness improvement by means of bit-line 

(column) twisting, yield improvement by introducing 

redundant elements for memory repair, etc. (see [2]-[4]). 

The purpose of introducing structural primitives with the 

corresponding scramble types that provide transformations 

between logical to physical and physical to logical forms of 

the memory model is to: 

▪ Provide a mechanism for IP related information transfer

between levels of memory embedding hierarchies.

Memory Structural Primitives provide interface for using

memory structural information without breaking its IP.

This allows solving test, diagnosis and repair problems

that need memory structural information.

▪ Provide a variety of memory models with logic and

physical forms. The subset of memory structural

primitives allows building a memory model that is

specific for current application with the same interface.

▪ Provide possibilities for efficient solution of many

problems connected with design, test diagnosis and

repair of memories [3], [4]:

1. Design: geometrical optimization, address decoder

optimization, area optimization (sharing cell contacts

and well area), speed, robustness improvement by

means of bit-line (column) twisting;

2. Test: a. Fault coverage increase. Knowledge of

scrambling types corresponding to the used structural

primitives allows test and detect special classes of

realistic functional fault models occurring between

neighboring nodes;

b. Simplification of the memory test algorithm.

3. Data Background patterns: To extract the required data

background patterns for the memory test algorithm,

certain structural primitives with their corresponding

scramble types are necessary.

4. Diagnosis: Knowledge of the physical neighborhood in

the memory and usage of the corresponding structural

primitives simplifies development of the diagnostic

algorithm and increases its efficiency.

5. Fault location: For repair purposes it is important to

locate the faulty bits in the memory. The fault detection

algorithm locates only the single-cell faults. Two-cell

faults, such as coupling faults are sometimes known as

realistic and statistically may have high probability of

occurrence. To repair such faults, it is necessary to

locate the aggressor cells causing the faults.

6. Repair: Reflection of state after memory repair.

7. Coordinate calculation of defective cells: For debugging

and silicon validation problems it is necessary to find

physical location or coordinates of defective cells in the

physical memory.

8. Bitmap viewing. For debugging and silicon validation

problems it is necessary to view the distribution of

defective cells in the memory array logically and

physically.

These structural primitives and the corresponding scramble 

types do not cover all possible types in memories. Our SIG 

tool [4] is flexible enough to include new structural 

primitives and scramble types that can appear in the future 

memory compilers of new technology and create new 

memory models by selecting a certain subset of structural 

primitives. 

4. EXAMPLES: ADDRESS AND DATA

SCRAMBLE TYPES IN MS
We consider the following list of scrambling types Tnm 

{ADRnm, (X,Y)nm, Onm, Dnm}for an embedded MS. 

The following notations are used: 

ADRnm is the logical address of instance Tnm in MS: 

(X,Y)nm are the ordinary X and Y coordinates of the 

reference point of an instance Tnm in the GDS file of an MS; 

Onm is the orientation and mirroring [3], [4] of an instance 

Tnm in the GDS file of an MS; 

Dnm is the Data range position of I/O bits of an instance Tnm 

in an MS word structure.     

All Tnm parameters are used in the listed above different 

applications of the MS test, repair and fault diagnosis.  

ADRnm is typically used to describe the address value in the 

range of logical address bits. For an example MS, the logical 

address scramble looks like [A10, A9 … A0] but the bits 

[A10:A8] are addressing instances Mnm in an MS. Data 

range position shows how the Data bus of an MS is 

constructed by Dnm of instances. For example, the Data Bus 

of MS contains bits [0:31], and it was formed by means of 

Data Bus of two instances. For example, D11 forms the lower 

[0:15] bits of the word, and D12 forms the upper bits [16:31] 

of the word. 

Onm is a string and shows the orientation and mirroring of the 

instance. A typically used orientation of cells and mirroring 

in the GDS are: r0, r0mx, mxr0, r90, mxr90, r90mx, r180, 

mxr180, r180mx, r270, mxr270, r270mx. 

4.1 Address scrambling 
As we already mentioned, an MS is considered by an MS 

environment as the logical/functional module that is 

controlled by the Address, Data busses and the Control 

signals. In the logical aspect, ADR (see Figure 2) is the set of 

the address signals with the range [0: ADRmax]. ADR 

includes two main parts: 1. Instance address and 2 Addresses 

of certain Cells in the instance (Figure 3). The purpose of 

Instance address is to select the corresponding memory 

instances in the MS. By means of this address signal in MS 

we generate the Memory Enable (ME) signals for the 

memory instance. 

The purpose of the selection address for Instance’s Cells is 

the addressing and activation of the MS word cells in the 

memory instance. Those signals include the following 

addresses of the instance: Columns, Rows and Banks (if 

there are any) in the memory instance.  The instance address 

signals activate the corresponding rows and columns of the 

instance memory area cells during the Write and the Read 

operations of MS. The address scrambling of the instance is 

an important part of the success in memory testing [3]. 
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In the given example all the parts of the MS address are 

presented in the regular distribution but in the general case 

the distribution of the address bits and parts can be irregular 

or mixed and in that case the address structure will be source 

of the scrambling for either the logical and the physical 

address of MS. 

4.2 Data scrambling 
The next type of the scrambling in MS is the Data 

scrambling (DS). For example, some cases of DS could be 

observed for MS with the physical structure with 2 rows and 

4 columns (see Figure 4).  In the given example DATA 

range is 64 bits and, the memories in the physically upper 

row are connected to [0:31]. Data bits and the memories in 

physically lower row, are respectively connected to [32:63] 

data bits of DATA bus. That kind of distribution of data bits 

assumes that in the MS the Read, and the Write operations of 

64 bits are implemented by means of two memory instances 

(the same ME signal is used), for example by M11 and M24 

instances. In the general case, the pairs can be formed by 

means of any instances from the two rows. Of course, the 

Data bus can be physically distributed by many other 

different ways also: each memory instance has 64-bits data 

bus (64-bit Read/Write operation requires one instance), 

each memory instance has 16-bit data bus (64-bit Read/Write 

operation requires four instances) etc.  All mentioned 

distributions of the data bits are the reasons of the logical to 

the physical scrambling in the MS DATA. 

5. MS APPLICATIONS WITH 

SCRAMBLING TYPES  
For the embedded memories, there are some applications 

which require the knowledge of certain scrambling types for 

both the MS and the memory instances in MS. Moreover, 

they can be implemented only based on the scrambling 

information.  Let us list some of them: MS Built-in self-test 

(BIST) (requires the address and the data scramble 

information); Diagnosis of the detected defect type; 

redundancy/register sharing, calculation of the topological X, 

Y coordinates of a defective cell in a memory instance of 

MS.  We will illustrate the usage of MS scrambling in the 

defect coordinate calculation. That application usually is 

used during the Fault Analysis (FA) for a new technology 

SoC production.  FA is required for those complicated cases 

when the source of the defect should be detected in the 

wafer. After BIST run and a defect detection in an MS the 

test algorithm returns the logical address and error bit 

position in the word of the defective cell. Based on this 

logical information the physical address (the physical 

number of the row (denoted N(rows) and the column - 

N(columns)) of the defective cell must be calculated by 

means of the address and data scrambling of MS. Then using 

the scrambling information of physical sizes of the memory 

bit-cell, sizes of the borders (left, right, bottom and top) of 

the memory instance and (X;Y) coordinates of the reference 

point of the instance, then taking into account the instance 

orientation  we can calculate the ordinary X(d) and Y(d) 

coordinates of the defective cell(s) by the formulas:  

X(d)= X(instance) + Size(left/right boarder) + 

+N(columns) x X(size of the bit cell); 

Y(d)= X(instance) + Size(bottom/top boarder) + 

+N(rows) x Y(size of the bit cell); 

It is obvious that calculation of coordinates X(d) and Y(d) 

would be impossible without the knowledge of scrambling 

information. 

6. CONCLUSION
A notion of Memory System (MS) is introduced as an 

extension of an SRAM instance. The notions of scrambling 

types known for instances are extended for MS. It is 

observed that knowledge of certain scrambling types for an 

MS are important for many problems of test & repair. A few 

examples of scrambling types for an MS are considered. 
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