
Address and Data Scrambling for Memory Systems

 Valery Vardanian Karen Amirkhanyan
 Synopsys Synopsys

Yerevan, Armenia

e-mail: kamirkha@synopsys.com

 Yerevan, Armenia

e-mail: vvardani@synopsys.com

ABSTRACT
In this paper, we defined a new logical organization of a

group of memory instances of the same size and structure,

called a memory system (MS). A few scrambling types

defined earlier for conventional SRAM memory instances

are extended for MS that are widely used nowadays in

semiconductor industry. It is observed that the defined

scrambling types may increase the efficiency of solving

several problems of test and repair connected with memory

systems.

Keywords
Memory system, scrambling type, address/data scrambling.

1. INTRODUCTION
Nowadays System-on-Chips (SoCs) contain numerous

functional blocks and the most prevailing among them are

the memories. The memories in SoC can have different sizes

from a small size (a few words) up to big sizes (a few

Gigabytes) of cells (data storages). The working speed

(frequency) of an MS is also different and depends on the

functionality of the memory block in an SoC. They can be

small but very fast register files, different level caches (L1 to

L3) or big but slow storages for the program data, graphical

information, etc. In SoCs, the memories of high performance

are usually implemented based on the Static Random-Access

Memories (SRAM). In current technologies, an SRAM is the

highest frequency memory, and that is the reason of widely

using SRAMs in different embedded functional blocks of

SoCs.

 A memory instance is typically implemented as an array

of storage cells of regular structure. Each cell stores a

discrete bit “0” or “1” of information. Memory control block

and column/row decoding logic map an externally provided

address into a selected pattern of cells. The selected cells can

be either written into or read from, depending on an external

command Write or Read.

 To test the memory instance, a test engine writes/reads

and then compares the predefined data pattern (DP) with the

one at a given address location. Efficiency of the memory

instance testing highly depends on the correct usage of the

structural information (“scrambling”) of the memory

instance [1]. The address and the data scrambling of the

memory instance are important approaches for increasing the

efficiency of the memory testing [2]. The different

addressing methods such as: Regular Up/Down, Incremental

Up/Down, Pop-Up/Down etc. and different (mainly 16)

Data Background (DB) types: Solid “0”/”1”, Double

column, Double rows, Checkerboard, Bit-line

Checkerboard, etc. (see in [2]) are used as patterns during the

testing of the memory instance [1], [2] with a set of test

algorithms. We want to mention that the Bit-line

Checkerboard BP is constructed based on the Bit-Line and

Row scramble information of the memory instance and that

is why topological Bit-line Checkerboard provides the

highest coverage of the memory testing [1], [2]. By

considering this, extraction of the complete and verified

scramble information of the memory compiler becomes a

very important task [3]-[5] for testing and many other

applications, such as memory repair, fault/defect diagnosis,

fault analysis, etc.

Another feature of the structure of embedded memories in

SoC is that they are usually constructed not based on one

instance only but usually on several instances of the

memory. This approach provides [6], high performance of

the memory, as well as higher flexibility during the physical

implementation (placement and routing) in GDS of an SoC.

In this extended abstract, based on the developments of

technology and emergence of new structural/hierarchical

organizations of sets of high numbers of memory instances

in an SoC, we found it relevant to introduce new definitions

for the new structural organizations of memory instances,

naming them as memory systems.

2. MEMORY SYSTEMS
The Memory System (MS) is a group of (usually,

homogeneous) memory instances (i.e., of the same size),

such as two or three levels of cache memory of CPUs

(widely known as L1 to L3 caches), the register files of

different types of controllers, the huge graphical memories,

the local caches between a fast bus and a low performance

unit, the reconfigurable Jenga CPU cache memory system

[3], [6], etc. All the examples mentioned above are a few

examples of embedded MS implementation.

We call a logical memory unit/module that is implemented

by means of several memory instances as a Memory System.

Figure 1 depicts an example of a simple MS that contains n x

m memory instances and has a form of a matrix of regular

memory instances of the same size. It is convenient to

consider it as a matrix or an array of cells of the size m x n

where each cell is a memory instance of a given size. Thus,

an MS is a direct and logical extension of the notion of a

conventional memory instance. An MS has a regular

structure, consisting of a group of memory instances of

regular and homogeneous structure. In Figure 1, ADR is the

logical Address bus of MS, MCS is the set of MS Control

Signals, Power is the set of power signals of MS, DATA is

the Data Bus of MS, Mij, i=1,…n, j=1,…,m, are the memory

instances included in MS. But, however, it should be noted

that, in general, the form of an MS may be of other forms as

well, not only a matrix. Also, the buses in MS may be not

only functional but also test buses (see [6]).

The functionality of an MS could be observed as a memory

logical unit, and it could be presented as a black box as well.

CSIT Conference 2019, Yerevan, Armenia, September 23-27

63

mailto:kamirkha@synopsys.com

At the same time, availability of the physical structure

information (scrambling) of MS is very important for some

applications such as: 1. the Memory test and repair, 2. Defect

analysis and diagnosis, 3. Redundancy planning and sharing

in the MS, 5. Register sharing for MS faults, 6. MS Fault

analysis, calculation of physical/logical coordinates of a

faulty cell in the memory array, etc. As in the case for a

memory instance, the physical structure and scramble of MS

are very important for the listed above, as well as many other

applications (see e.g., [8] - automated extraction of

scrambling types, [9] – defect injection flow).

3. SCRAMBLING TYPES (PRIMITIVES)

IN SRAM MEMORY COMPILERS
A memory compiler usually contains a GDS (Graphic Data

System) file as a geometrical representation of the memory

structural model. This model is a detailed description of the

memory and naturally has a very large volume of megabytes

of information. To develop algorithms for solution of

different problems connected with memory design & test, it

was previously accepted widely to analyze the GDS model

of the memory. Due to the necessity of high computational

resources connected with exploration and analysis of the

GDS file with detailed and complete information on the

memory structure the problems such as development of test

algorithms, background pattern extraction for topological

checkerboard (or other types), finding physical coordinates

or location of defective cells, physical bitmap viewing of

defective cells in the memory array, structural changes in the

memory after its repair by redundant elements, error

correction based on error correction codes, etc., required

excessive time for handling of GDS files when considering

large memory compilers.

GDS is a binary format for representation of planar

geometric shapes, text labels and some other information in a

hierarchical form. It reflects the physical layout (Integrated

circuit layout), also known as IC layout or IC mask layout,

of an integrated circuit in terms of planar geometric shapes

that correspond to shapes drawn on photomasks used in

semiconductor device fabrication. Originally, GDS was

designed as a format of data files used to control integrated

circuit photomask. Despite its limited set of features and low

data density, it was ubiquitously used for transfer of IC

layout data between design tools from different vendors

which operated with proprietary data formats. GDS files are

considered as final output of the IC design cycle and are

passed to IC foundries for IC fabrication.

We proposed (see [3], [4]) a new approach to develop

memory models of sufficiently simple structure than the

GDS file for consideration of different problems. We have

extracted several structural primitives from the layout

corresponding to the GDS file constituting a basis for

construction of different memory models of different

complexity with respect to the information contained in the

GDS. By selecting different subsets of structural

“primitives” (scrambling types) (see [4]) we constructed

different memory models. In dependence on the problem

considered, the memory model may be much simple than the

GDS and the time complexity for exploration and analysis of

the simple structural model of the memory becomes

significantly smaller than the one necessary for exploration

and analysis of the whole GDS. This approach allows

significant reduction of time necessary for extensive

simulations.

In [2], the authors described the importance of the usage of

address and data scrambling. They indicated the importance

of scrambling information for testing issues and defined 16

different Data Backgrounds and suggested to use them with

a set of test algorithms applied several times with different

DPs to increase the fault coverage of test algorithms. They

have done experiments on several March algorithms and

experimentally showed that scrambling has significant

impact on the fault coverage of the test algorithms by

increasing it up to 35%. In [4], we have defined several other

scrambling types corresponding to our visual observation of

hundreds of GDS files of contemporary memory compilers.

Finally, we developed a tool for automated generation of

different memory models by selecting the necessary subset

of structural primitives from the complete set of structural

primitives from the basis. In [3], we defined a procedure

called SIV (Scrambling Information Verification) tool for

automated verification of the scrambling information

generated automatically by means of the Scramble

Information Generator (SIG) tool developed in [4]. Shortly,

the tool compares the scrambling information with respect to

the GDS file of the compiler and thus verifies the correctness

of its generation by the SIG tool.

Each memory model has two basic forms for representation:

logical and physical. Those transformations can be described

in many formats, for example, a TCL procedure. The set of

all TCL procedures, corresponding to all transformations

from logical to physical and from physical to logical, are

described in a database, called the Scrambling Library [4].

When a specific memory model is selected the

corresponding scrambling types with their TCL procedures

are activated by the tool.

Both forms, the logical and physical, are important and have

their range of application. The logical form is used for outer

representation of the memory model which can be different

from the inner representation of the physical form of the

model. In addition to convenience for using the logical form

it may have also other purposes as well, e.g., IP protection to

veil the main structural features of the memory from

customers. The difference between logical structure of the

memory seen from outside and internal physical structure is

named scrambling. In other words, for example, address

scrambling means that logically adjacent cells with logically

adjacent addresses may not be physically adjacent. For

testing the memory to detect certain faults, the test algorithm

which applies read and write operations to the memory cells

(words) often needs to allocate specific data on physically

neighboring cells (words). Due to the unavailability of the

scrambling information, the customer is often forced to

apply different data background patterns with the test

algorithm to compensate for the effects of scrambling. Often

scrambling is introduced intentionally for physical purposes

M11 M12 M1m

M21 M22 M2m

Mn1 Mn1 Mnm

Memory System

Fig. 1. Definition of the Memory System

ADR

MCS

DATA

Power

…

…

…

… … …

64

to improve the electrical characteristics of the design,

geometrical optimization, address decoder optimization, for

area optimization (sharing cell contacts and well area) (see

[3], [4]), speed, robustness improvement by means of bit-line

(column) twisting, yield improvement by introducing

redundant elements for memory repair, etc. (see [2]-[4]).

The purpose of introducing structural primitives with the

corresponding scramble types that provide transformations

between logical to physical and physical to logical forms of

the memory model is to:

▪ Provide a mechanism for IP related information transfer

between levels of memory embedding hierarchies.

Memory Structural Primitives provide interface for using

memory structural information without breaking its IP.

This allows solving test, diagnosis and repair problems

that need memory structural information.

▪ Provide a variety of memory models with logic and

physical forms. The subset of memory structural

primitives allows building a memory model that is

specific for current application with the same interface.

▪ Provide possibilities for efficient solution of many

problems connected with design, test diagnosis and

repair of memories [3], [4]:

1. Design: geometrical optimization, address decoder

optimization, area optimization (sharing cell contacts

and well area), speed, robustness improvement by

means of bit-line (column) twisting;

2. Test: a. Fault coverage increase. Knowledge of

scrambling types corresponding to the used structural

primitives allows test and detect special classes of

realistic functional fault models occurring between

neighboring nodes;

b. Simplification of the memory test algorithm.

3. Data Background patterns: To extract the required data

background patterns for the memory test algorithm,

certain structural primitives with their corresponding

scramble types are necessary.

4. Diagnosis: Knowledge of the physical neighborhood in

the memory and usage of the corresponding structural

primitives simplifies development of the diagnostic

algorithm and increases its efficiency.

5. Fault location: For repair purposes it is important to

locate the faulty bits in the memory. The fault detection

algorithm locates only the single-cell faults. Two-cell

faults, such as coupling faults are sometimes known as

realistic and statistically may have high probability of

occurrence. To repair such faults, it is necessary to

locate the aggressor cells causing the faults.

6. Repair: Reflection of state after memory repair.

7. Coordinate calculation of defective cells: For debugging

and silicon validation problems it is necessary to find

physical location or coordinates of defective cells in the

physical memory.

8. Bitmap viewing. For debugging and silicon validation

problems it is necessary to view the distribution of

defective cells in the memory array logically and

physically.

These structural primitives and the corresponding scramble

types do not cover all possible types in memories. Our SIG

tool [4] is flexible enough to include new structural

primitives and scramble types that can appear in the future

memory compilers of new technology and create new

memory models by selecting a certain subset of structural

primitives.

4. EXAMPLES: ADDRESS AND DATA

SCRAMBLE TYPES IN MS
We consider the following list of scrambling types Tnm

{ADRnm, (X,Y)nm, Onm, Dnm}for an embedded MS.

The following notations are used:

ADRnm is the logical address of instance Tnm in MS:

(X,Y)nm are the ordinary X and Y coordinates of the

reference point of an instance Tnm in the GDS file of an MS;

Onm is the orientation and mirroring [3], [4] of an instance

Tnm in the GDS file of an MS;

Dnm is the Data range position of I/O bits of an instance Tnm

in an MS word structure.

All Tnm parameters are used in the listed above different

applications of the MS test, repair and fault diagnosis.

ADRnm is typically used to describe the address value in the

range of logical address bits. For an example MS, the logical

address scramble looks like [A10, A9 … A0] but the bits

[A10:A8] are addressing instances Mnm in an MS. Data

range position shows how the Data bus of an MS is

constructed by Dnm of instances. For example, the Data Bus

of MS contains bits [0:31], and it was formed by means of

Data Bus of two instances. For example, D11 forms the lower

[0:15] bits of the word, and D12 forms the upper bits [16:31]

of the word.

Onm is a string and shows the orientation and mirroring of the

instance. A typically used orientation of cells and mirroring

in the GDS are: r0, r0mx, mxr0, r90, mxr90, r90mx, r180,

mxr180, r180mx, r270, mxr270, r270mx.

4.1 Address scrambling
As we already mentioned, an MS is considered by an MS

environment as the logical/functional module that is

controlled by the Address, Data busses and the Control

signals. In the logical aspect, ADR (see Figure 2) is the set of

the address signals with the range [0: ADRmax]. ADR

includes two main parts: 1. Instance address and 2 Addresses

of certain Cells in the instance (Figure 3). The purpose of

Instance address is to select the corresponding memory

instances in the MS. By means of this address signal in MS

we generate the Memory Enable (ME) signals for the

memory instance.

The purpose of the selection address for Instance’s Cells is

the addressing and activation of the MS word cells in the

memory instance. Those signals include the following

addresses of the instance: Columns, Rows and Banks (if

there are any) in the memory instance. The instance address

signals activate the corresponding rows and columns of the

instance memory area cells during the Write and the Read

operations of MS. The address scrambling of the instance is

an important part of the success in memory testing [3].

M11

T11

M12

T12

M1m

T1m

M21

T21

Memory System

Fig. 2. Scrambling types of embedded MS

ADR

MCS

DATA

Power

…

…

…

… … …

M22

T22

M2m

T2m

Mn1

Tn1

Mn2

Tn2

Mnm

Tnm

65

In the given example all the parts of the MS address are

presented in the regular distribution but in the general case

the distribution of the address bits and parts can be irregular

or mixed and in that case the address structure will be source

of the scrambling for either the logical and the physical

address of MS.

4.2 Data scrambling
The next type of the scrambling in MS is the Data

scrambling (DS). For example, some cases of DS could be

observed for MS with the physical structure with 2 rows and

4 columns (see Figure 4). In the given example DATA

range is 64 bits and, the memories in the physically upper

row are connected to [0:31]. Data bits and the memories in

physically lower row, are respectively connected to [32:63]

data bits of DATA bus. That kind of distribution of data bits

assumes that in the MS the Read, and the Write operations of

64 bits are implemented by means of two memory instances

(the same ME signal is used), for example by M11 and M24

instances. In the general case, the pairs can be formed by

means of any instances from the two rows. Of course, the

Data bus can be physically distributed by many other

different ways also: each memory instance has 64-bits data

bus (64-bit Read/Write operation requires one instance),

each memory instance has 16-bit data bus (64-bit Read/Write

operation requires four instances) etc. All mentioned

distributions of the data bits are the reasons of the logical to

the physical scrambling in the MS DATA.

5. MS APPLICATIONS WITH

SCRAMBLING TYPES
For the embedded memories, there are some applications

which require the knowledge of certain scrambling types for

both the MS and the memory instances in MS. Moreover,

they can be implemented only based on the scrambling

information. Let us list some of them: MS Built-in self-test

(BIST) (requires the address and the data scramble

information); Diagnosis of the detected defect type;

redundancy/register sharing, calculation of the topological X,

Y coordinates of a defective cell in a memory instance of

MS. We will illustrate the usage of MS scrambling in the

defect coordinate calculation. That application usually is

used during the Fault Analysis (FA) for a new technology

SoC production. FA is required for those complicated cases

when the source of the defect should be detected in the

wafer. After BIST run and a defect detection in an MS the

test algorithm returns the logical address and error bit

position in the word of the defective cell. Based on this

logical information the physical address (the physical

number of the row (denoted N(rows) and the column -

N(columns)) of the defective cell must be calculated by

means of the address and data scrambling of MS. Then using

the scrambling information of physical sizes of the memory

bit-cell, sizes of the borders (left, right, bottom and top) of

the memory instance and (X;Y) coordinates of the reference

point of the instance, then taking into account the instance

orientation we can calculate the ordinary X(d) and Y(d)

coordinates of the defective cell(s) by the formulas:

X(d)= X(instance) + Size(left/right boarder) +

+N(columns) x X(size of the bit cell);

Y(d)= X(instance) + Size(bottom/top boarder) +

+N(rows) x Y(size of the bit cell);

It is obvious that calculation of coordinates X(d) and Y(d)

would be impossible without the knowledge of scrambling

information.

6. CONCLUSION
A notion of Memory System (MS) is introduced as an

extension of an SRAM instance. The notions of scrambling

types known for instances are extended for MS. It is

observed that knowledge of certain scrambling types for an

MS are important for many problems of test & repair. A few

examples of scrambling types for an MS are considered.

REFERENCES
[1] A.J. van de Goor “Testing Semiconductor Memories:

Theory & Practice”, ComTex Publishing, pp. 1-512,

1998.

[2] A.J. van de Goor, “Address and Data Scrambling: Causes

and Impact on Memory Tests”, DELTA, pp. 128-136,

2002.

[3] K. Alexanyan, K. Amirkhanyan, S. Karapetyan, S.

Shoukourian, A. Shubat, V. Vardanian, Y. Zorian,

“Various methods and apparatuses for memory modeling

using a structural primitive verification for memory

compilers”, US Patent No. 8,112,730, pp. 1-22, 2012.

[4] K. Aleksanyan, K. Amirkhanyan, S. Shoukourian, V.

Vardanian, Y. Zorian, “Memory Modeling Using an

Intermediate Level Structural Description”, US Patent,

No 7768840, USA, pp. 1-17, 2010.

[5] S.-K. Lu, H.-C. Jheng, H.-W. Lin, M. Hashizume_, and

S. Kajihar, “Built-in Scrambling Analysis for Yield

Enhancement of Embedded Memories”, IEEE 23rd

Asian Test Symposium, pp.137-142, 2014.

[6] M.Tyson, “Reconfigurable 'Jenga' CPU cache memory

system proposed

https://hexus.net/tech/news/cpu/107725-reconfigurable-

jenga-cpu-cache-memory-system-proposed/, pp. 1-3,

2017.

[7] D. Schor, "AMD’s Zen CPU Complex, Cache, and

SMU”, Architectures, Circuit Design, ISSCC 2018 pp,

1-2, 2018.

[8] K. Amirkhanyan, K. Darbinyan, A. Davtyan, G.

Harutyunyan, S. Shoukourian, V. Vardanian, Y. Zorian,

“Generation of Memory Structural Model Based on

Memory Layout”, US Patent No. 9,514,258, pp. 1-32,

2016.

[9] K. Amirkhanyan “Defect injection and memory test

algorithms verification flow” CSIT, pp. 283-286, 2011.

M21 M22

Memory System
ADR

M24

Fig. 4. Data scrambling in the Memory System

MCS

DATA (64bits)

Power M23

M11 M12 M14 M13

D[0:31] D[0:31] D[0:31] D[0:31]

D[32:63] D[32:63] D[32:63] D[32:63]

Fig. 3 MS address structure

Instance

logic address

MS logic address

Cells of the word logic address

in the instance

Instance

address

Bank

address

Row

address

Column

address

66

	DT.pdf (p.85-107)
	DT_Title.pdf (p.1)
	New - Copy.pdf (p.2)
	50_190603_181912_DT_FinalSubmissionCSIT2019_FINAL.pdf (p.3-6)
	53_190607_110134_DT_CSIT_2019_Accurate_Pressure_Calculation_Method.pdf (p.7-10)
	81_190731_112131_DT_CSIT2019_p2_final.pdf (p.11-14)
	82_190731_130632_DT_CSIT2019_p1_final.pdf (p.15-18)
	DT_P_Title.pdf (p.19)
	New.pdf (p.20)
	03_190326_015335_DT_petrosyan1_FINAL.pdf (p.21-23)

	ITCT.pdf (p.142-150)
	ITCT_Title.pdf (p.1)
	New.pdf (p.2)
	73_190710_184356_ITCT_CSIT_Haroutunian_FINAL.pdf (p.3-6)
	69_190628_160849_ITCT_wiretap_csit_FINAL.pdf (p.7-9)

	50_190603_181912_DT_FinalSubmissionCSIT2019_FINAL.pdf (p.3-6)

