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ABSTRACT 

Chemical-mechanical polishing/planarization (CMP) is one 

of the key processes used in electronic chip manufacturing. In 

CMP, a rotating wafer is pressed facedown onto a rotating 

polishing pad. A chemical “slurry” containing abrasive 

particles and chemical reagents is deposited on the pad during 

polishing, and flows between the wafer and the pad. The 

combined action of the polishing pad, abrasive particles, and 

chemical reagents results in material removal and 

planarization of the wafer surface.  

In recent years, modeling of the CMP process has become 

critical for detection of planarity defects in chips before 

manufacturing. One of the key parameters affecting the 

surface planarization is the pressure, with which the wafer is 

pressed against the pad. Calculation of the pressure 

distribution across the wafer surface is crucial for modeling 

the CMP process. This pressure calculation typically uses 

contact mechanics methods that include solving an integral 

equation using fast Fourier (FFT) and inverse fast Fourier 

(IFFT) transforms. However, the kernel of the integral 

equation has singularities that lead to numerical instability.  

In this paper, we propose a method to avoid numerical 

instabilities in pressure calculation by using an analytical 

expression for the Fourier transform of the kernel function. 
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1. INTRODUCTION

Chemical-mechanical polishing/planarization (CMP) is an 

electronic chip manufacturing process for removing excess 

conductive and dielectric materials from a silicon wafer to 

smooth out and flatten the wafer surface using the combined 

action of chemical reactions and mechanical forces (Fig. 1). It 

uses a chemical slurry in conjunction with a polishing pad to 

remove material and even out irregular topography for wafer 

surface planarization. CMP results are very sensitive to the 

applied pressure, slurry chemistry, and the pattern printed on 

the wafer, which may result in dishing of metal lines and 

erosion of dielectrics.  

Figure 1. Schematic view of CMP process. 

Numerous wafer-scale and feature-scale CMP models have 

been proposed to predict the evolution of the wafer surface 

during the polishing process. Moving to new technology 

nodes that require high-k metal gate (HKMG) technology 

with additional CMP steps, the high cost of lithography due 

to double and triple patterning, strong depth of focus (DOF) 

requirements, and improving the accuracy of CMP models 

have all increased interest in CMP modeling [1-3].  

The front end-of-line (FEOL) and back end-of-line (BEOL) 

are the two main segments in the fabrication of integrated 

circuits (ICs). The FEOL process is the first part of IC 

fabrication. It includes all the process steps necessary to build 

the substrate architecture, including the architecture for the 

electrical isolation structures, transistors, capacitors, resistors, 

etc. The BEOL process connects all these integrated devices, 

forming the necessary logic and memory circuits. Both of 

these segments depend strongly on the deposition of layers of 

different materials, using a variety of deposition technologies 

to deposit oxides, glasses, conductors, and nitrides.  

The post-deposition surface profile is used as input for CMP 

modeling. Normally, the material removal rate during 

polishing is proportional to the applied pressure (Preston’s 

law). However, even with advanced deposition processes, the 

post-deposition profile of a patterned wafer is non-uniform. It 

may contain large variations that can affect surface planarity 

after CMP. Thus, calculation of the pressure distribution over 

the chip area is crucial for accurately modeling the surface 

profile of the chip after CMP. Recently, a neural network-

based full-chip deposition model for predicting the post-

deposition profile surface was proposed [4]. 

In this paper, we focus on the problem of accurate pressure 

calculation for CMP modeling. The pressure distribution over 

chip surface is one of the key factors affecting the surface 

planarity, non-local interactions, and long-range effects 

during CMP. Thus, accurate calculation of pressure 

distribution over chip area is a question of primary interest.  

We concentrate on the pressure calculation method based on 

Hertz contact theory and the Chekina model [5]. This model 

assumes the pad is a massive elastic body, the surface of 

which is flat, and the wafer is a rigid body. The calculations 

involve application of fast Fourier (FFT) and inverse fast 

Fourier (IFFT) transforms for pressure calculation using pad 

displacement. Typically, the kernel of the integral equation 

has singularities, which are avoided by adding a constant 

parameter to the kernel function. This generates numerical 

instabilities and slows down the convergence of the algorithm. 

Using theorems and ideas discussed in this paper, we were 

able to derive an analytical expression of the kernel function 

Fourier transform and avoid the appearance of singularities.  
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2. SUPPORTING THEOREMS

The Fourier and inverse Fourier transforms of the function 

f(x) have the following forms  

𝐹(𝜔) =
1

√2𝜋
∫ 𝑓(𝑥)

∞

−∞

𝑒−𝑖𝜔𝑥𝑑𝑥 , 𝑓(𝑥) =
1

√2𝜋
∫ 𝐹(𝜔)

∞

−∞

𝑒𝑖𝜔𝑥𝑑𝜔. 

For simplicity, we denote Fourier and inverse Fourier 

transforms as Φ(∙) and Φ−1(∙).

Theorem 1 (Convolution): The Fourier transform of 

convolution of two functions is equal to the product of Fourier 

transforms of those two individual functions. 

Φ(𝑓 ∗ 𝑔) = √2𝜋Φ(𝑓)Φ(𝑔), (1) 

where 

(𝑓 ∗ 𝑔)(𝑥) = ∫ 𝑓(𝑥 − 𝑠)𝑔(𝑠)𝑑𝑠.

∞

−∞

 (2) 

Lemma (Riemann-Lebesgue): If 𝑓(𝑥) ∈ 𝐿1 then

𝑙𝑖𝑚
|𝜔|→∞

Φ(𝜔) = 0. (3) 

Proof: We will only show that the Fourier transform Φ(𝑓) of 

the function f (x) is limited  

|Φ(𝜔)| =
1

√2𝜋
| ∫ 𝑓(𝑥)

∞

−∞

𝑒−𝑖𝜔𝑥𝑑𝑥|, 

1

√2𝜋
| ∫ 𝑓(𝑥)

∞

−∞

𝑒−𝑖𝜔𝑥𝑑𝑥| ≤
1

√2𝜋
∫ |𝑓(𝑥)||𝑒−𝑖𝜔𝑥|𝑑𝑥,

∞

−∞

1

√2𝜋
∫ |𝑓(𝑥)||𝑒−𝑖𝜔𝑥|𝑑𝑥 =

‖𝑓‖

√2𝜋
< ∞

∞

−∞

. 

Theorem 2: If function 𝑓(𝑥) ∈ 𝐿1  and its derivative 𝑓′(𝑥) ∈
𝐿1 , then the Fourier transform of the derivate 𝑓′(𝑥) has the

following form: 

1

√2𝜋
∫ 𝑓′(𝑥)𝑒−𝑖𝜔𝑥𝑑𝑥 = 𝑖𝜔

∞

−∞

𝐹(𝜔). (4) 

From the Riemann-Lebesgue Lemma and Theorem 2 the 

following condition follows: 

|𝐹(𝜔)| ≤
𝑐

 |𝜔|
, (5) 

where c is a constant number. 

Theorem 3: If the Fourier transform of the function 

𝐾(𝑥, 𝑦) =
1

√𝑥2+𝑦2
 satisfies the condition 

∫ ∫|𝐾(𝑥, 𝑦)|2𝑑𝑥𝑑𝑦 < ∞

𝑑

𝑐

𝑏

𝑎

, (6) 

then for K(x,y) the following equation is true 

lim
𝑁→∞

1

4𝜋2
∫ ∫|𝐾(𝑥, 𝑦) − 𝐾𝑁(𝑥, 𝑦)|2𝑑𝑥𝑑𝑦 = 0

𝑑

𝑐

𝑏

𝑎

, 

where 𝐾𝑁(𝑥, 𝑦) is the nth partial sum of the 𝐾(𝑥, 𝑦) function

Fourier series. 

3. PRESSURE CALCULATION

Suppose a rigid wafer is pressed against the elastic flat surface 

of a polishing pad with applied pressure P0 (Fig. 2). Since the 

wafer surface is not flat, the polishing pad deforms, leading 

to the appearance of pad displacements. The line a is the 

reference line, with respect to which the displacements are 

calculated. Let’s define the perturbation pad displacements 

w𝑝𝑎𝑑  as the distance between the top of the pad surface and

the reference line a (dashed arrow line in Fig. 2), and the wafer 

profile height wwafer as the distance between the top of the 

surface of the wafer and the reference line a (solid arrow line 

in Fig. 2).  

Figure 2. Wafer-pad contact surface. 

The relation between the displacements of the surface at each 

point w(x, y) and the contact pressure p(x, y) can be obtained 

from the Hertz equation, which is a Fredholm equation of the 

first kind 

𝑤(𝑥, 𝑦) = kc  ∫ ∫
𝑝(𝜉, 𝜂)

√(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2

𝑑

𝑐

𝑏

𝑎

𝑑𝜉𝑑𝜂, (7) 

where 𝑘𝑐 = (1 − 𝜈) 𝜋𝐸⁄  is related to Poisson’s ratio 𝜈. This

equation can be considered as a convolution of the pressure 

P(x,y) and the kernel function K(x,y),  

𝑤(𝑥, 𝑦) = 𝑘𝑐 (𝑝(𝜉, 𝜂) ∗  𝐾(𝑥, 𝑦)), (8) 

where 

𝐾(𝑥, 𝑦) =
1

√𝑥2 + 𝑦2
 . (9) 

According to the convolution Theorem 1 for the Fourier 

transforms of the displacements we have  

Φ(𝑤(𝑥, 𝑦)) = 𝑘𝑐Φ( 𝑝(𝜉, 𝜂)) ×  Φ(𝐾(𝑥, 𝑦)). (10)

From (10) using Fourier analysis, the pressure-displacement 

relation can be written in the following form: 

𝑝(𝑥, 𝑦) =
1

𝑘𝑐

Φ−1
(

Φ(𝑤(𝑥, 𝑦))

Φ(𝐾(𝑥, 𝑦))
). (11) 

The function K(x,y) has a singularity at the start point of the 

coordinate system and is replaced with  

𝐾(𝑥, 𝑦) =
1

√𝑥2 + 𝑦2 + 𝜀
 , 

(12) 
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where 𝜀 is a small number. The introduction of 𝜀 solves the 

singularity problem; however, it also generates numerical 

instabilities and slows down the convergence rate of the 

pressure calculation algorithm.  

Using the Riemann-Lebesgue Lemma and Theorem 2, an 

analytic expression for the Fourier transform of the kernel (8) 

can be derived. The analytic expression of the kernel function 

provides better accuracy and improves algorithm stability and 

convergence rate.  

Algorithm description: 

 Assume that the pad is in contact with the wafer

everywhere. This means that the pad perturbation

displacement wpad is equal to the known profile height

wwafer.

 Using equation (6) and the analytical expression for a

Fourier transform of the kernel function, calculate the pad

pressure in each cell.

𝑝𝑝𝑎𝑑(𝑥, 𝑦)

=
1

𝑘𝑐

Φ−1 (
Φ (𝑤𝑝𝑎𝑑(𝑥, 𝑦))

Φ(𝐾(𝑥, 𝑦))
)|

𝑤𝑝𝑎𝑑=𝑤𝑤𝑎𝑓𝑒𝑟

. 
(13) 

 For each cell, check that the contact pressure is positive.

𝑃0 − 𝑝𝑝𝑎𝑑 ≥ 0. (14) 

 If the contact pressure is negative, it means that the pad is

not in contact with the wafer in that cell. For that cell,

decrease the pad displacement value wpad by a fixed step

𝛿𝐷 and recalculate the pressure distribution.

 Repeat the procedure until constraint (14) is satisfied for

all cells.

 Finally, calculate the actual pressure on the wafer surface

as follows:

𝑃 = {
𝑃0 − 𝑝𝑝𝑎𝑑     w𝑝𝑎𝑑  =  w𝑤𝑎𝑓𝑒𝑟  

 0   w𝑝𝑎𝑑 < w𝑤𝑎𝑓𝑒𝑟
. 

4. NUMERICAL RESULTS

The algorithm was tested on several profile patterns (Figs. 3-

6). The results show that the profile of the contact pressure is 

in agreement with expectations. All numerical computations 

were done with the same pad stiffness value (1 𝑘𝑐⁄ = 125200

kPa) and applied pressure (9.3kPa). 

Figure 3. (a) Wafer surface profile for the sinusoidal shapes, 

(b) Pad pressure distribution for sinusoidal surface case.

First we considered a wafer surface profile with evenly 

distributed sinusoidal shapes (Fig. 3(a)). Here the pressure 

distribution takes the maximum values on the profile bumps 

peaks, which is expected for the considered surface pattern 

(Fig. 3(b)). 

Figure 4. (a) Wafer surface profile for a single prism; (b) Pad 

pressure distribution for a single prism. 

In Fig. 4(a) and Fig. 5(a), profiles of patterns with constant 

length single and multiple prismatic patterns are considered. 

The pressure distribution maximum values are concentrated 

on the edges of the profile bumps over prismatic patterns for 

both the structure containing single (Fig. 4(b)) or multiple 

prisms (Fig. 5(b)). Such behavior is in agreement with 

expectations. 

In Fig. 6(a), structures with varying size prismatic patterns are 

considered. In Fig. 6(b), the distribution of pressure over the 

patterns is shown. We see that the maximum pressure values 

are achieved on the corners of the short prisms, and pressure 

on the edges of the prisms are higher than at the center parts. 

The predicted pressure distribution is in agreement with 

expectations. These and other patterns were tested with the 

proposed method and all of them showed correct physical 

behavior. This confirms that the method predicts correct 

pressure distribution and may be used for CMP modeling.  

True 

False Check 

Condition (14) 

wpad = wwafer 

Calculate pressure for 

each cell, Eq. (13) 

Take in all cells 

 w𝑝𝑎𝑑  =  w𝑝𝑎𝑑 − 𝛿𝐷

Done 

(a) 

(b) 

(a) 

(b) 
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Figure 5. (a) Wafer surface profile for prismatic shapes 

separated by the same distance; (b) Pad pressure distribution 

for a multiple prisms pattern. 

Figure 6. (a) Wafer surface profile for multiple prismatic 

shapes of different lengths; (b) Pad pressure distribution. 

In the next series of experiments, we investigated the 

algorithm convergence and its effect on the runtime. We 

observed that removing singularity of the kernel function by 

using an analytical expression for the Fourier transform of the 

kernel function may decrease the number of iterations for 

pressure distribution convergence by 10-30% and improve the 

runtime, in some cases by 30%.  

5. CONCLUSION

CMP modeling is crucial for the detection of planarity defects 

in chips before manufacturing. Pad pressure distribution over 

chip area plays a critical role during polishing. Namely, 

pressure distribution is responsible for long-range pattern 

interactions or long-range effects in CMP, and highly affects 

erosion of dielectrics and dishing of wide metal lines after 

polishing. Contact mechanics methods are typically used to 

calculate the pressure distribution, which involve 

computations of FFT and IFFT of the kernel function with 

singularities. Due to new technology developments and the 

increase of the number of patterns printed on wafers, the size 

of wafers are increasing. Thus, faster and stable algorithms 

with higher rates of convergence are needed for pressure 

distribution calculation for CMP modeling.  

In this paper, we discussed a new method for pressure 

calculation based on an analytical expression for a Fourier 

transform of the singular kernel function of pressure 

distribution integral equation. The new method provides 

much more accurate numerical results, and improves pressure 

calculation algorithm convergence and runtime. 
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