
An Efficient Fault Detection and Diagnosis Methodology

for Volatile and Non-Volatile Memories

Suren Martirosyan
Yerevan State University

Yerevan, Armenia

e-mail: suren.martirosyan.92@gmail.com

Gurgen Harutyunyan
Synopsys

Yerevan, Armenia

e-mail: gurgen.harutyunyan@synopsys.com

ABSTRACT
Memory reliability and testability are considered as primary

requirements for achieving high production yield in

nowadays system on chips (SoCs). For that purpose,

different testing methods and diagnosis flows were proposed

in the past. The fault models and test mechanisms can be

different when dealing with volatile and non-volatile

memories. This paper describes an efficient test

methodology for detection and diagnosis of faults in both

volatile and non-volatile types of memories.

Keywords
Static random access memory, flash memory, memory faults,

test algorithm, March test, fault detection and diagnosis.

1. INTRODUCTION
Memory reliability is an important and critical requirement

for SoCs. Embedded memories are growing rapidly to a

large amount in terms of size and density. As they use more

and more complex design structures, the occurrence

probability of manufacturing defects becomes increasingly

high. Therefore, testing of embedded memories using

advanced nodes is a real challenge. Memories are divided

into two categories: volatile memories, which require

connection to power source to maintain the stored data and

non-volatile memories, which can store the data regardless

of power supply connection). The testing methodologies of

volatile and non-volatile memories are different since these

memories have different structures and functions. Non-

volatile memories are popular for portable IoT devices due

to their low power consumption and flexibility. On the other

hand, volatile memories (such as static random access

memories – SRAMs) are much faster and can be used in

applications where maintaining the memory data is not

needed after the system power off. Usually SoCs are using

both volatile and non-volatile types of memories in the same

design and there is actually a need to have a unified

architecture that allows testing both volatile and non-volatile

memories re-using the same test infrastructure.

The main problems of testing memory devices are fault

detection and fault diagnosis. The aim of fault detection is to

check whether the given memory contains a fault or not.

Faults can be divided into simple faults (such as single-cell

faults) or complex faults (such as coupling or linked faults).

The role of fault diagnosis is to provide complete

information about the memory faults, which includes: fault

type, physical location of the fault, aggressor cell

information in case of coupling faults, etc. There are

numerous articles proposing different kind of test methods

for solving the problem of fault diagnosis [1]-[5]. However,

very little research was done so far on fault diagnosis for

non-volatile memories especially Flash.

This paper presents a unified solution of fault detection and

diagnosis for designs, which contain both volatile and non-

volatile types of memories. In addition, it provides

comprehensive multi-level diagnosis information using

advanced test algorithms and memory scrambling

information.

2. MEMORY FAULTS AND TEST

APPROACHES
For volatile memory testing March test algorithms [6] are

most popular since March-based testing algorithms have

linear complexity w.r.t. memory cells meanwhile providing

high fault coverage. Therefore, those kind of test algorithms

are widely used in majority of modern memory built-in self-

test (BIST) schemes [7]. For non-volatile memories,

conventional March test algorithms are not sufficient

because the operations and testing requirements for non-

volatile memories are different. In order to test non-volatile

memories extended March-like test algorithms [8] are used.

2.1. Testing Volatile Memories
The popular type of volatile memory is the random access

memory (RAM). There are two types of RAMs: static

(SRAM) and dynamic (DRAM). In [9] the architecture and

difference between these memories is described.

Figure 1 shows the bit-cell of SRAM. It consists of 6

transistors. Access transistors (A1 and A2) are located at the

edges. Each inverter from a pair of cross-coupled inverters

contains a driver transistor (D1 and D2) and a pull-up

transistor (P1 and P2). When the word line is activated

(during write and read operations), the access transistors

open access from the bit lines to cell internal nodes (Q and

~Q).

In standby state the access transistors are turned off since

word line is not asserted, so the cell cannot be accessed, and

the data is being hold. When reading from the cell, the word

line is asserted and turns on the access transistors. The stored

data is driven onto bit lines. A voltage difference occurs

between bit lines and the sense amplifier detects the cell

value. When writing to the cell, the word line is asserted, the

value is applied to bit lines and the access transistor

discharges one of the internal nodes.

Figure 1. SRAM bit-cell

CSIT Conference 2019, Yerevan, Armenia, September 23-27

71

Figure 2 shows the bit-cell of DRAM. It consists of 1

transistor and 1 capacitor. The information is stored as a

charge in capacitor. The transistor gives read and write

access. When performing write operation, the state that the

capacitor should take on is in word lines. The word line is

opened, and the sense amplifier is forced to corresponding

voltage state. When reading, if the charge in capacitor is

more than 50%, the value is considered as 1, otherwise the

value is 0. The charge is determined by the sense amplifier.

Depending on SoC manufacturer, the set of faults in memory

may vary. Fault is the logical representation of a physical

defect (line is broken, short between lines, etc.) in the

memory.

The sequence of write and read operations resulting in

memory incorrect behavior is called a sensitizing operation

sequence (S) and the behavior is called faulty behavior (F).

The fault is described with combination of S, F and R

(S/F/R), where R is the logical output of the read operation.

This combination is called Fault Primitive (FP) [10]. The

most common faults are classified in two groups:

1. Static faults: The faults that are being activated by

performing a single operation. The common static fault is

Stuck-at fault, when the cell is stuck at concrete value

and write operation does not make any change on it.

Transition faults, Read destructive faults, and coupling

faults [10] also belong to the group of static faults.

2. Dynamic faults: The faults that require more than one

consecutive operation to be activated. For example, two

consecutive read operations applied to the same cell can

flip the cell value (single-cell dynamic fault), or two

consecutive write operations applied to a cell (aggressor

cell) can change the value of another cell (victim cell)

[10].

A single March test algorithm, which covers all static and

dynamic faults may be unacceptable for some manufacturers

because of its complexity. Therefore, there are a lot of

different March test algorithms proposed in the literature

with different fault coverage and complexities. The test

algorithms for RAM fault testing are described in [6] and

[10].

2.2. Testing Non-Volatile Memories
Flash memory is a common type of non-volatile memory.

Figure 3 shows the transistor architecture of the Flash

memory cell. It is based on floating gate (FG) concept. The

cell value is determined by the charge in the FG. There are 2

ways of charging and discharging the FG: Fowler-Nordheim

tunneling and channel hot electron injection (CHE) [11].

Unlike RAMs, Flash memories support three operations:

read, program and erase. The read operation reads the stored

data from the memory word. Program operation charges the

cells of the word. Erase operation can discharge the cells of a

sector or the cells of whole memory depending on memory

architecture. The programming is performed by CHE, with

drain and control gate (CG). The drain is connected to high

voltage. The erase is performed by Fowler-Nordheim

tunneling. A high voltage is applied to source diffusion and

the electrons are being tunneled from FG to source diffusion

by grounding CG. There are two types of Flash memories:

NAND Flash and NOR Flash. They differ from each other

with their architecture. NAND Flash provides faster program

and erase compared to NOR Flash. On the contrary, NOR

Flash provides random read access to memory word instead.

There are some common types of traditional RAM faults that

can occur also in Flash memories such as stuck-open fault

(SOF), address-decoder fault (AF), state-coupling fault

(CFst), etc. However, since Flash memories have different

cell architecture from RAMs, there are Flash specific faults

that do not occur in RAMs. The set of these types of faults is

called disturbance faults, which have the following subtypes:

• Word-line erase disturbance (WED);

• Bit-line erase disturbance (BED);

• Word-line program disturbance (WPD);

• Bit-line program disturbance (BPD);

• Source-line program disturbance (SPD);

• Gate read erase disturbance (GRE);

• Channel read-program disturbance (CRP);

• Read program disturbance (RPD);

• Read erase disturbance (RED);

• Over erase disturbance (OED);

• Over program disturbance (OPD);

• Read disturb (RD).

Disturbance fault types and their most common causes are

discussed in [12].

In addition to the above discussed faults, Flash memories

have two characteristics that also need to be tested properly.

1. Endurance: the parameter that measures the number of

sequential program-erase cycles the memory can handle

without any failure. The cycle may generate a defect,

which can prevent from successful operation on memory

cells.

2. Retention: the ability of memory cells to retain charged

(programmed) state for a concrete period of time.

Endurance and retention are reliability issues and stress tests

[13] are required for their testing. The March like test

algorithms for testing disturbance faults and common faults

with RAMs are discussed in [12].

3. PROPOSED TEST METHODOLOGY
In this paper, a unified BIST architecture is proposed, which

allows to perform fault detection and diagnosis for volatile

and non-volatile memories (see Figure 4). “RAM BIST”

blocks contain Test Algorithm Register (TAR) for storing

RAM fault detection and diagnosis algorithms and FSM

(Finite State Machine), which performs the execution of the

Figure 3. Flash bit-cell

Figure 2. DRAM bit-cell

72

test algorithms on RAMs in two modes: normal mode (fault

detection) and diagnosis mode. Similarly, “Flash BIST”

blocks contain the corresponding TAR for storing Flash fault

detection and diagnosis algorithms and the FSM for test

algorithm execution in normal and diagnosis modes. Due to

large number of memories in nowadays SoCs, multiple

“RAM BIST” and “Flash BIST” blocks are used, which are

shared across the memories. The grouping of memories can

be done based on different criteria, such as memory

frequency, proximity of memories in the chip, limit on

power consumption or number of memories per BIST block,

etc. On the top, all the BIST blocks are connected to the

Server, which is in charge of test scheduling, i.e., it allows to

run the BIST blocks in parallel or in serial based on resource

and test limitations available for a given design. Server is

connected to JTAG standard interface [14], which allows to

apply test patterns from ATE (automatic test equipment).

After running the test on ATE if a fault is detected then it

will generate a datalog, which contains information on the

following:

• at which cycle of test the fault was detected;

• which March element and which operation in March

element were running at that time;

• in which memory address the fault was observed;

• in which data bit the fault was observed;

• etc.

This architecture has the following advantages:

• Unified interface for RAM and Flash BIST blocks;

• BIST block logic sharing across different memories;

• Possibility to test multiple memories in parallel;

• Possibility to run multiple BIST blocks in parallel.

For a given March test algorithm and a given fault, the

corresponding March syndrome [1] is a vector of 0s and 1s,

the size of which matches the number of read operations in

the March test algorithm. The i-th bit of the March syndrome

is 1 if i-th read operation of the March test algorithm detects

the given fault, otherwise it is 0.

Figure 5 shows the proposed fault detection and diagnosis

flow for embedded SRAM and Flash memories. The

proposed flow is implemented in Synopsys DesignWare

STAR Memory System product [15] and has already been

used in many production chips using leading edge

technology nodes including 16nm, 7nm and 5nm. It has the

following functionalities:

1. Read a given design and create a database to include:

a. the distribution of BIST blocks and their types

(RAM or Flash BIST);

b. the distribution of memories along with the

information on how the memories are grouped

under each BIST block;

c. the test algorithms for Flash and RAM testing

available in TARs and their purpose (for fault

detection or fault diagnosis).

2. Create a dictionary of March syndromes for the fault

diagnosis algorithms;

3. Based on the provided datalog (generated by ATE),

report fault information (fault type, fault location, etc.).

Table 1 lists a set of test algorithms that can be used by

default (maybe length can also be mentioned). In addition,

DesignWare STAR Memory System has a library of test

algorithms, which can be used in case more complex faults

need to be covered. While March MSL, March-FTE, March

FD are well known test algorithms published in our previous

works, March Flash-FD test algorithm has been developed

within the scope of this work.

JTAG

Flash BIST

FSM

TAR

Server

Flash

Flash

Flash RAM

RAM

RAM
Flash

Flash

RAM RAM

RAM
RAM RAM

RAM

RAM

RAM BIST

FSM

TAR

RAM BIST

FSM

TAR

Flash BIST

FSM

TAR

RAM BIST

FSM

TAR

Figure 4. Proposed architecture

Yes No

No

Create SoC DB

Select memories

to be tested

Diagnosis

Mode?

Yes

Select fault

detection algorithms

Run BIST

in normal mode

Report Pass/Fail

Select fault

diagnosis algorithms

Run BIST

in diagnostic mode

Analyze ATE

datalog

Report Fault

information

Report

Pass

Fail?

Figure 5. Fault detection and diagnosis flow

73

Table 1. Used Test Algorithms

March test Memory Purpose

March MSL [17] SRAM Detection

March-FTE [18] Flash Detection

March FD [16] SRAM Diagnosis

March Flash-FD Flash Diagnosis

Figure 6 shows multiple levels of the proposed fault

diagnosis flow [16] supported by the tool. It starts from

identifying whether a given memory instance has a fault or

not. Then logical address and physical location of the fault

are identified including the row/column and X, Y

coordinates of the faulty cell. The next step is to identify the

defect classification (i.e., whether it is single bit, pair bit,

column/row failure, etc.). Finally, the flow allows to do fault

classification and localization, i.e., to identify the fault type

and location of aggressor cell in case of coupling faults.

Information on the memory scrambling (mapping between

memory logical address and physical location of the bit-cell

in the memory array) is necessary for creating optimal fault

detection and diagnosis solutions. e.g., for generating

accurate physical background patterns, reporting the exact

physical coordinates of failed cells in the memory, etc.

In [19], it is stated that the lack of memory scrambling

information can lead up to 35% test escapes.

4. CONCLUSION
This paper presents an efficient test methodology for

detection and diagnosis of faults in volatile and non-volatile

memories. It starts with the discussion on fault types and

testing approaches for both types of memories. Then the

actual proposed flow is presented demonstrating how fault

detection and diagnosis is done. The solution is implemented

in Synopsys DesignWare STAR Memory System and has

been used in many production chips.

REFERENCES
[1] J.-F. Li, K.-L. Cheng, C.-T. Huang, and C.-W. Wu,

“March based RAM diagnostic algorithms for stuck-at
and coupling faults”, IEEE ITC, 2001, pp. 758-767.

[2] Z. Al-Ars, S. Hamdioui, “Fault Diagnosis Using Test
Primitives in Random Access Memories”, IEEE Asian
Test Symposium, 2009, pp. 403-408.

[3] M. de Carvalho, P. Bernardi, M. Sonza Reorda, N.
Campanelli, et al, “Optimized Embedded Memory
Diagnosis”, IEEE International Symposium on Design

and Diagnostics of Electronic Circuits & Systems,
2011, pp. 347–352.

[4] N. Campanelli, T. Kerekes, P. Bernardi, M. de
Carvalho, et al, “Cumulative embedded memory failure
bitmap display & analysis”, IEEE International
Symposium on Design and Diagnostics of Electronic
Circuits and Systems, 2010, pp. 255-260.

[5] T.J. Bergfeld, D. Niggemeyer, E.M. Rudnick,
“Diagnostic Testing of Embedded Memories Using
BIST”, Design, Automation and Test in Europe, 2000,
pp. 305-309.

[6] A.J. van de Goor, “Testing semiconductor memories:
Theory and Practice”, John Wiley & Sons, Chichester,
England, 1991.

[7] Y. Zorian, S. Shoukourian, “Embedded-Memory Test
and Repair: Infrastructure IP for SoC Yield”, IEEE
Design and Test of Computers, pp. 58-66, 2003.

[8] J.-Ch. Yeh, K.-L. Cheng, Y.-F. Chou, Ch.-W. Wu,
“Flash Memory Testing and Built-In Self-Diagnosis
with March-Like Test Algorithms”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 26, No. 6, Jun. 2007, pp. 1101-1113.

[9] https://www.microcontrollertips.com/dram-vs-sram/

[10] S. Hamdioui, Z. Al-Ars, A.J. van de Goor, “Testing
Static and Dynamic Faults in Random Access
Memories”, IEEE VLSI Test Symposium, 2002, pp. 395-
400.

[11] F.-Ch. Hsu, K.-Y. Chiu, “A comparative study of
tunneling, substrate hot-electron and channel hot-
electron injection induced degradation in thin-gate
MOSFET's”, International Electron Devices Meeting,
1984.

[12] K.-L. Cheng, J.-Ch. Yeh, Ch.-W. Wang, Ch.-T. Huang,
Ch.-W. Wu, “RAMSES-FT: A Fault Simulator for
Flash Memory Testing and Diagnostics”, IEEE VLSI
Test Symposium, 2002, pp. 281-286.

[13] H. Aziza, J-M. Portal, J. Plantier, “Non volatile memory
reliability prediction based on oxide defect generation
rate during stress and retention tests”, International
Semiconductor Device Research Symposium, 2011, pp.
1-2.

[14] IEEE Std. 1149.1, IEEE Standard for Test Access Port
and Boundary-Scan Architecture, 2001.

[15] K. Darbinyan, G. Harutyunyan, S. Shoukourian, V.
Vardanian, Y. Zorian, “A Robust Solution for
Embedded Memory Test and Repair”, IEEE Asian Test
Symposium, 2011, pp. 461-462.

[16] G. Harutyunyan, S. Martirosyan, S. Shoukourian, Y.
Zorian, “Memory Physical Aware Multi-Level Fault
Diagnosis Flow”, IEEE Transactions on Emerging
Topics in Computing, 2018.

[17] G. Harutunyan, V. A. Vardanian, Y. Zorian, “Minimal
March Test Algorithm for Detection of Linked Static
Faults in Random Access Memories”, IEEE VLSI Test
Symposium (VTS), 2006, pp. 120-125.

[18] S. Martirosyan, G. Harutyunyan, S. Shoukourian, Y.
Zorian, “An Efficient Testing Methodology for
Embedded Flash Memories”, IEEE East-West Design
and Test Symposium (EWDTS), 2017, pp. 422-425.

[19] A.J. van de Goor, I. Schanstra, “Address and Data
Scrambling: Causes and Impact on Memory Tests”,
IEEE International Workshop on Electronic Design,
Test and Applications, 2002, pp. 128-137.

Level 7: Fault localization

(aggressor cell coordinates)

Level 6: Fault Classification

(stuck-at, coupling, etc.)

Level 5: Defect classification

(single bit, paired bit, etc.)

Level 4: Physical X, Y

coordinates of faulty cell

Level 3: Physical Position of

Fault (Row, Column)

Level 2: Logical Address of

Fault

Level 1: Memory Instance

Fault

Figure 6. Multi-level fault diagnosis results

74

	DT.pdf (p.85-107)
	DT_Title.pdf (p.1)
	New - Copy.pdf (p.2)
	50_190603_181912_DT_FinalSubmissionCSIT2019_FINAL.pdf (p.3-6)
	53_190607_110134_DT_CSIT_2019_Accurate_Pressure_Calculation_Method.pdf (p.7-10)
	81_190731_112131_DT_CSIT2019_p2_final.pdf (p.11-14)
	82_190731_130632_DT_CSIT2019_p1_final.pdf (p.15-18)
	DT_P_Title.pdf (p.19)
	New.pdf (p.20)
	03_190326_015335_DT_petrosyan1_FINAL.pdf (p.21-23)

	ITCT.pdf (p.142-150)
	ITCT_Title.pdf (p.1)
	New.pdf (p.2)
	73_190710_184356_ITCT_CSIT_Haroutunian_FINAL.pdf (p.3-6)
	69_190628_160849_ITCT_wiretap_csit_FINAL.pdf (p.7-9)

	81_190731_112131_DT_CSIT2019_p2_final.pdf (p.11-14)

