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ABSTRACT 
Memory reliability and testability are considered as primary 

requirements for achieving high production yield in 

nowadays system on chips (SoCs). For that purpose, 

different testing methods and diagnosis flows were proposed 

in the past. The fault models and test mechanisms can be 

different when dealing with volatile and non-volatile 

memories. This paper describes an efficient test 

methodology for detection and diagnosis of faults in both 

volatile and non-volatile types of memories. 
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1. INTRODUCTION
Memory reliability is an important and critical requirement 

for SoCs. Embedded memories are growing rapidly to a 

large amount in terms of size and density. As they use more 

and more complex design structures, the occurrence 

probability of manufacturing defects becomes increasingly 

high. Therefore, testing of embedded memories using 

advanced nodes is a real challenge. Memories are divided 

into two categories: volatile memories, which require 

connection to power source to maintain the stored data and 

non-volatile memories, which can store the data regardless 

of power supply connection). The testing methodologies of 

volatile and non-volatile memories are different since these 

memories have different structures and functions. Non-

volatile memories are popular for portable IoT devices due 

to their low power consumption and flexibility. On the other 

hand, volatile memories (such as static random access 

memories – SRAMs) are much faster and can be used in 

applications where maintaining the memory data is not 

needed after the system power off. Usually SoCs are using 

both volatile and non-volatile types of memories in the same 

design and there is actually a need to have a unified 

architecture that allows testing both volatile and non-volatile 

memories re-using the same test infrastructure. 

The main problems of testing memory devices are fault 

detection and fault diagnosis. The aim of fault detection is to 

check whether the given memory contains a fault or not. 

Faults can be divided into simple faults (such as single-cell 

faults) or complex faults (such as coupling or linked faults). 

The role of fault diagnosis is to provide complete 

information about the memory faults, which includes: fault 

type, physical location of the fault, aggressor cell 

information in case of coupling faults, etc. There are 

numerous articles proposing different kind of test methods 

for solving the problem of fault diagnosis [1]-[5]. However, 

very little research was done so far on fault diagnosis for 

non-volatile memories especially Flash. 

This paper presents a unified solution of fault detection and 

diagnosis for designs, which contain both volatile and non-

volatile types of memories. In addition, it provides 

comprehensive multi-level diagnosis information using 

advanced test algorithms and memory scrambling 

information. 

2. MEMORY FAULTS AND TEST

APPROACHES
For volatile memory testing March test algorithms [6] are 

most popular since March-based testing algorithms have 

linear complexity w.r.t. memory cells meanwhile providing 

high fault coverage. Therefore, those kind of test algorithms 

are widely used in majority of modern memory built-in self-

test (BIST) schemes [7]. For non-volatile memories, 

conventional March test algorithms are not sufficient 

because the operations and testing requirements for non-

volatile memories are different. In order to test non-volatile 

memories extended March-like test algorithms [8] are used. 

2.1. Testing Volatile Memories 
The popular type of volatile memory is the random access 

memory (RAM). There are two types of RAMs: static 

(SRAM) and dynamic (DRAM). In [9] the architecture and 

difference between these memories is described. 

Figure 1 shows the bit-cell of SRAM. It consists of 6 

transistors. Access transistors (A1 and A2) are located at the 

edges. Each inverter from a pair of cross-coupled inverters 

contains a driver transistor (D1 and D2) and a pull-up 

transistor (P1 and P2). When the word line is activated 

(during write and read operations), the access transistors 

open access from the bit lines to cell internal nodes (Q and 

~Q). 

In standby state the access transistors are turned off since 

word line is not asserted, so the cell cannot be accessed, and 

the data is being hold. When reading from the cell, the word 

line is asserted and turns on the access transistors. The stored 

data is driven onto bit lines. A voltage difference occurs 

between bit lines and the sense amplifier detects the cell 

value. When writing to the cell, the word line is asserted, the 

value is applied to bit lines and the access transistor 

discharges one of the internal nodes. 

Figure 1. SRAM bit-cell 

CSIT Conference 2019, Yerevan, Armenia, September 23-27

71



Figure 2 shows the bit-cell of DRAM. It consists of 1 

transistor and 1 capacitor. The information is stored as a 

charge in capacitor. The transistor gives read and write 

access. When performing write operation, the state that the 

capacitor should take on is in word lines. The word line is 

opened, and the sense amplifier is forced to corresponding 

voltage state. When reading, if the charge in capacitor is 

more than 50%, the value is considered as 1, otherwise the 

value is 0. The charge is determined by the sense amplifier. 

Depending on SoC manufacturer, the set of faults in memory 

may vary. Fault is the logical representation of a physical 

defect (line is broken, short between lines, etc.) in the 

memory. 

The sequence of write and read operations resulting in 

memory incorrect behavior is called a sensitizing operation 

sequence (S) and the behavior is called faulty behavior (F). 

The fault is described with combination of S, F and R 

(S/F/R), where R is the logical output of the read operation. 

This combination is called Fault Primitive (FP) [10]. The 

most common faults are classified in two groups: 

1. Static faults: The faults that are being activated by

performing a single operation. The common static fault is

Stuck-at fault, when the cell is stuck at concrete value

and write operation does not make any change on it.

Transition faults, Read destructive faults, and coupling

faults [10] also belong to the group of static faults.

2. Dynamic faults: The faults that require more than one

consecutive operation to be activated. For example, two

consecutive read operations applied to the same cell can

flip the cell value (single-cell dynamic fault), or two

consecutive write operations applied to a cell (aggressor

cell) can change the value of another cell (victim cell)

[10].

A single March test algorithm, which covers all static and 

dynamic faults may be unacceptable for some manufacturers 

because of its complexity. Therefore, there are a lot of 

different March test algorithms proposed in the literature 

with different fault coverage and complexities. The test 

algorithms for RAM fault testing are described in [6] and 

[10]. 

2.2. Testing Non-Volatile Memories 
Flash memory is a common type of non-volatile memory. 

Figure 3 shows the transistor architecture of the Flash 

memory cell. It is based on floating gate (FG) concept. The 

cell value is determined by the charge in the FG. There are 2 

ways of charging and discharging the FG: Fowler-Nordheim 

tunneling and channel hot electron injection (CHE) [11]. 

Unlike RAMs, Flash memories support three operations: 

read, program and erase. The read operation reads the stored 

data from the memory word. Program operation charges the 

cells of the word. Erase operation can discharge the cells of a 

sector or the cells of whole memory depending on memory 

architecture. The programming is performed by CHE, with 

drain and control gate (CG). The drain is connected to high 

voltage. The erase is performed by Fowler-Nordheim 

tunneling. A high voltage is applied to source diffusion and 

the electrons are being tunneled from FG to source diffusion 

by grounding CG. There are two types of Flash memories: 

NAND Flash and NOR Flash. They differ from each other 

with their architecture. NAND Flash provides faster program 

and erase compared to NOR Flash. On the contrary, NOR 

Flash provides random read access to memory word instead. 

There are some common types of traditional RAM faults that 

can occur also in Flash memories such as stuck-open fault 

(SOF), address-decoder fault (AF), state-coupling fault 

(CFst), etc. However, since Flash memories have different 

cell architecture from RAMs, there are Flash specific faults 

that do not occur in RAMs. The set of these types of faults is 

called disturbance faults, which have the following subtypes: 

• Word-line erase disturbance (WED);

• Bit-line erase disturbance (BED);

• Word-line program disturbance (WPD);

• Bit-line program disturbance (BPD);

• Source-line program disturbance (SPD);

• Gate read erase disturbance (GRE);

• Channel read-program disturbance (CRP);

• Read program disturbance (RPD);

• Read erase disturbance (RED);

• Over erase disturbance (OED);

• Over program disturbance (OPD);

• Read disturb (RD).

Disturbance fault types and their most common causes are

discussed in [12].

In addition to the above discussed faults, Flash memories

have two characteristics that also need to be tested properly.

1. Endurance: the parameter that measures the number of

sequential program-erase cycles the memory can handle

without any failure. The cycle may generate a defect,

which can prevent from successful operation on memory

cells.

2. Retention: the ability of memory cells to retain charged

(programmed) state for a concrete period of time.

Endurance and retention are reliability issues and stress tests 

[13] are required for their testing. The March like test

algorithms for testing disturbance faults and common faults

with RAMs are discussed in [12].

3. PROPOSED TEST METHODOLOGY
In this paper, a unified BIST architecture is proposed, which 

allows to perform fault detection and diagnosis for volatile 

and non-volatile memories (see Figure 4). “RAM BIST” 

blocks contain Test Algorithm Register (TAR) for storing 

RAM fault detection and diagnosis algorithms and FSM 

(Finite State Machine), which performs the execution of the 

Figure 3. Flash bit-cell 

Figure 2. DRAM bit-cell 
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test algorithms on RAMs in two modes: normal mode (fault 

detection) and diagnosis mode. Similarly, “Flash BIST” 

blocks contain the corresponding TAR for storing Flash fault 

detection and diagnosis algorithms and the FSM for test 

algorithm execution in normal and diagnosis modes. Due to 

large number of memories in nowadays SoCs, multiple 

“RAM BIST” and “Flash BIST” blocks are used, which are 

shared across the memories. The grouping of memories can 

be done based on different criteria, such as memory 

frequency, proximity of memories in the chip, limit on 

power consumption or number of memories per BIST block, 

etc. On the top, all the BIST blocks are connected to the 

Server, which is in charge of test scheduling, i.e., it allows to 

run the BIST blocks in parallel or in serial based on resource 

and test limitations available for a given design. Server is 

connected to JTAG standard interface [14], which allows to 

apply test patterns from ATE (automatic test equipment). 

After running the test on ATE if a fault is detected then it 

will generate a datalog, which contains information on the 

following:  

• at which cycle of test the fault was detected;

• which March element and which operation in March

element were running at that time;

• in which memory address the fault was observed;

• in which data bit the fault was observed;

• etc.

This architecture has the following advantages:

• Unified interface for RAM and Flash BIST blocks;

• BIST block logic sharing across different memories;

• Possibility to test multiple memories in parallel;

• Possibility to run multiple BIST blocks in parallel.

For a given March test algorithm and a given fault, the

corresponding March syndrome [1] is a vector of 0s and 1s,

the size of which matches the number of read operations in

the March test algorithm. The i-th bit of the March syndrome

is 1 if i-th read operation of the March test algorithm detects

the given fault, otherwise it is 0.

Figure 5 shows the proposed fault detection and diagnosis

flow for embedded SRAM and Flash memories. The

proposed flow is implemented in Synopsys DesignWare

STAR Memory System product [15] and has already been

used in many production chips using leading edge

technology nodes including 16nm, 7nm and 5nm. It has the

following functionalities:

1. Read a given design and create a database to include:

a. the distribution of BIST blocks and their types

(RAM or Flash BIST);

b. the distribution of memories along with the

information on how the memories are grouped 

under each BIST block; 

c. the test algorithms for Flash and RAM testing

available in TARs and their purpose (for fault

detection or fault diagnosis).

2. Create a dictionary of March syndromes for the fault

diagnosis algorithms;

3. Based on the provided datalog (generated by ATE),

report fault information (fault type, fault location, etc.).

Table 1 lists a set of test algorithms that can be used by 

default (maybe length can also be mentioned). In addition, 

DesignWare STAR Memory System has a library of test 

algorithms, which can be used in case more complex faults 

need to be covered. While March MSL, March-FTE, March 

FD are well known test algorithms published in our previous 

works, March Flash-FD test algorithm has been developed 

within the scope of this work. 
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Table 1. Used Test Algorithms 

March test Memory Purpose 

March MSL [17] SRAM Detection 

March-FTE [18] Flash Detection 

March FD [16] SRAM Diagnosis 

March Flash-FD Flash Diagnosis 

Figure 6 shows multiple levels of the proposed fault 

diagnosis flow [16] supported by the tool. It starts from 

identifying whether a given memory instance has a fault or 

not. Then logical address and physical location of the fault 

are identified including the row/column and X, Y 

coordinates of the faulty cell. The next step is to identify the 

defect classification (i.e., whether it is single bit, pair bit, 

column/row failure, etc.). Finally, the flow allows to do fault 

classification and localization, i.e., to identify the fault type 

and location of aggressor cell in case of coupling faults. 

Information on the memory scrambling (mapping between 

memory logical address and physical location of the bit-cell 

in the memory array) is necessary for creating optimal fault 

detection and diagnosis solutions. e.g., for generating 

accurate physical background patterns, reporting the exact 

physical coordinates of failed cells in the memory, etc.  

In [19], it is stated that the lack of memory scrambling 

information can lead up to 35% test escapes. 

4. CONCLUSION
This paper presents an efficient test methodology for 

detection and diagnosis of faults in volatile and non-volatile 

memories. It starts with the discussion on fault types and 

testing approaches for both types of memories. Then the 

actual proposed flow is presented demonstrating how fault 

detection and diagnosis is done. The solution is implemented 

in Synopsys DesignWare STAR Memory System and has 

been used in many production chips. 
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