
Unified Test Generation and Application Flow

for Automotive SoCs

David Sargsyan
Yerevan State University

Yerevan, Armenia

e-mail: davvad93@gmail.com

Gurgen Harutyunyan
Synopsys

Yerevan, Armenia

e-mail: gurgen.harutyunyan@synopsys.com

ABSTRACT
This paper presents an end-to-end test solution for an

automotive system on chips (SoCs). The presented multi-

purpose solution provides the possibility to select the

appropriate test mechanisms at design stage, detect

manufacturing faults during the production, check the safety

mechanisms during power-up, as well as run periodic test

during mission mode. A software automation tool and its

application to a safety critical SoC are demonstrated to show

the effectiveness and completeness of the proposed flow.

Keywords
Automotive, ISO 26262, ASIL, built-in self-test, periodic test.

1. INTRODUCTION
Nowadays the automotive market makes great strides in

semiconductors industry. After increasing 11.5% in 2014, the

automotive semiconductors market declined 2.5% in 2015,

but then in 2016 it returned with 10.6%. There are several

reasons driving the growth of this market (see Figure 1): the

rising trend of vehicle electrification, rapid technological

progress, the increasing vehicle production, etc. In order to

meet automotive market requirements, automakers

continually integrate Electronic Control Units (ECU) into

vehicles to ensure better driving experience and safety. The

fastest growing segments in automotive semiconductor

market are Advanced Driver Assistance Systems (ADAS) and

Electric vehicles. Some of the examples of such systems are

Adaptive Cruise Control (ACC), Road Sign Recognition

(RSR), Intelligent Speed Adaptation (ISA), Driver

Monitoring System (DMS) and so forth. These

electrical/electronic systems play a crucial role during

autonomous driving, and since the health of people is put at

stack any risk of failure needs to be minimized as much as

possible. Thus, they have very high safety and reliability

requirements.

One of the most important requirements in automotive is to

have reliable test and repair solution for a product, not only at

manufacturing but also in the field. This is related mainly to

embedded memories in SoC, spanning most of the SoC area

and being the major contributors to high yield. The most

preferred approach for testing and repairing embedded

memories is built-in self-test (BIST) solution. Before

automotive requirements came to the scene, traditional BIST

solutions were mainly focused on SoC production stage. Now

when automotive has occupied a large sector in

semiconductors market, mission mode safety has become one

of the highest priority requirements for memory BIST

solutions. Therefore, having a high-quality product after

production stage is not enough, it is equally important to have

an efficient test solution also in the field.

Different BIST approaches for mission mode memory testing

have already been proposed in the literature. One of such

techniques is transparent BIST described in [1]. The main goal

of transparent BIST is to maintain memory content after

testing. It transforms the existing BIST test algorithms into

transparent ones, based on a set of predefined rules,

meanwhile maintaining the coverage of the test algorithm.

Several new features for in-field testing are presented in [2],

for instance, the concept of non-destructive and destructive

self-tests is presented.

There are several works, which show the benefits of structural

testing for in-field test and fault diagnoses. For instance, [3]

shows the advantages of reusing production mode test

methods for in-system test. The disadvantage of this method

is non-availability of test access port in the field.

The goal of this paper is to combine all the above-mentioned

solutions and present an end-to-end test solution and

generation flow for memories in automotive SoC.

In the next section of this paper ISO 26262 standard and its

requirements for memory BIST are presented. In Section 3, a

unified test generation flow for embedded memory testing is

described. Section 4 presents the implementation details and,

finally, Section 5 concludes the paper.

2. ISO 26262 AND ITS REQUIREMENTS
Considering the discussed high demands of safety and

reliability in automotive, the detection of potential risks of

software and hardware gets high priority. This motivated the

emergence of ISO 26262 standard [5]. ISO 26262 is an

adaptation of IEC 61508 functional safety of

electrical/electronic/programmable electronic safety-related

systems for specific automotive requirements. It defines the

requirements for achieving an acceptable level of risk for

electrical and/or electronic systems in automotive. The

qualification of the final product is done by automotive safety

integrity levels (ASIL) A-D. In ISO 26262, ASIL

classifications are used to express the level of risk reduction

to prevent hazards. ASIL D is the highest level and ASIL A is

the lowest. The ASIL level calculated for the given hazard is

then assigned to the safety goal. ASIL is determined based on

a combination of the probability of exposure, the possible

controllability by a driver, and the possible outcome severity

if a critical event occurs. In order to meet the safety and

reliability requirements of ISO 26262 standard, it is necessary

to have 3 stages of testing for automotive SoCs:

manufacturing test, power-on self-test (POST) and mission

mode test.

Figure 1. Automotive IC Market growth diagram [4]

CSIT Conference 2019, Yerevan, Armenia, September 23-27

75

Manufacturing test

In production mode the main requirement of automotive is to

have a high quality product, which is measured by high yield

and low DPPM (Defective Parts Per Million) for the

embedded memory. Considering this, the main goal of the

testing during manufacturing process is to have an efficient

and comprehensive set of test and repair algorithms. There are

different test algorithms developed for memory testing [6]-

[8]. The main difference between them is the complexity, thus

they have different runtime requirements. Depending on the

criticality and specifics of the final product, different

algorithms may be utilized.

Power-on self-test

ISO 26262 standard has a strong requirement to test

embedded memories not only at production, but also during

functional mode. The reason of such requirement is to avoid

occurrence of any hazardous failure in functional mode,

which can originate, for instance, due to aging or

electromigration effect. Therefore, the system should be

tested during each power-up. This stage is called power-on

self-test (POST). The main goal of POST is to check whether

all the components in automotive SoC are functioning

correctly or not. While in production mode there are options

to select preferable test algorithms, and run test algorithms

with high complexity, during POST the test algorithms are not

programmable, they are hardcoded and cannot be modified

afterwards. Besides, it is preferable to have test algorithms

with the low complexity, due to time constraints before

entering mission mode.

Based on ISO 26262 standard, there is also another

requirement to “check the checkers”. In other words, there is

a need to check if fault detection mechanisms (also called

safety mechanisms) are functioning correctly since due to

aging, electromigration or other reasons, those mechanisms

can become erroneous and behave incorrectly.

Mission mode test

After POST, the third stage of testing is to periodically test the

system in mission mode. Periodic test checks whether the

device has become unsafe after the last POST. The main goal

of periodic test is to test the system periodically with the small

bursts and warn the driver in case of any potential issue.

The other type of testing used in the mission mode is the error

correction code (ECC) [9]. The techniques discussed above,

target the testing of hard faults, nevertheless, in order to

adhere safety and reliability requirements there is a need to

handle also the soft errors occurring in the mission mode. The

basic idea of ECC is based on the concept of adding check bits

in the memory associated with each memory word, which are

determined by even parity checks and reporting an error in

case the parity check is failing.

3. TEST GENERATION FLOW
This section presents a unified test generation flow for

automotive SoCs. Figure 2 shows a typical SoC hierarchical

test structure. Hierarchical test system helps to test large SoCs

within the desired schedule and cost. It makes SoC testing

more flexible, by allowing to schedule the test of different

memory and IP groups, running them in parallel or serial, thus

optimizing the test time.

3.1. Manufacturing Test Generation Flow
As it was already stated, the main goal of manufacturing test

is to have efficient test and repair algorithms. There are two

main classes of memory faults:

• Static faults – this type of faults can be sensitized by single

memory operation. Examples of static faults are stuck-at

fault, coupling fault, read disturb fault, etc.

• Dynamic faults – this type of faults requires more than one

memory operation to be sensitized, thus the number of

dynamic faults is theoretically unlimited. Examples of

dynamic faults are dynamic read disturb fault, dynamic

incorrect read fault, dynamic deceptive read disturb fault,

etc.

Single-cell fault primitives (FPs) are described by <S/F/R>

and two-cell (coupling) FPs are described by <Sa; Sv /F/R>

[7]. In notations of FPs, S, Sa and Sv are the sequences of

operations required for fault sensitization (S is applied to the

faulty cell, Sa - to the aggressor cell and Sv - to the victim

cell), F{0, 1} is the observed memory behavior that deviates

from the expected one. R{0, 1, -} is the result of a read

operation applied to the faulty cell, in case if the last operation

of S is a Read operation. “ - “ is used when the last operation

of S is not a Read operation. For example, if a cell has the fault

<0W0/1/->, it means that if it contains value 0, then applying

operation W0 on it will flip the cell value from 0 to 1. Or if

two cells contain the fault <1; 0W1R1/0/1>, it means the

following: if the aggressor cell has value 1, the victim cell has

value 0 then applying two sequential operations {W1, R1}

will fail. Though the read operation will return the correct

value 1, the victim cell value will remain 0.

Using the above notation, Tables 1-4 present unlinked static

and two-operation dynamic faults [8]. The symbol “~” used

in the tables denotes logical negation, and x, y, z, t{0, 1}.

In addition to the described faults, advanced technology nodes

have brought their own types of faults like FinFET-specific

faults [10]. Since automotive SoCs are mainly using the

advanced nodes, then the testing of memories should cover

also those faults.

Table 1. Single-cell static faults
Functional fault models Fault primitives

State Fault (SF) <x/~x/->

Transition Fault (TF) <xW(~x)/x/->

Write Destructive Fault (WDF) <xWx/~x/->

Read Destructive Fault (RDF) <Rx/~x/~x>

Deceptive Read Destructive Fault (DRDF) <Rx/~x/x>

Incorrect Read Fault (IRF) <Rx/x/~x>

Table 2. Two-cell static faults
Functional fault models Fault primitives

State Coupling Fault (CFst) <x; y/~y/->

Transition Coupling Fault (CFtr) <x; yW(~y)/y/->

Write Destructive Coupling Fault (CFwd) <x; yWy/~y/->

Read Destructive Coupling Fault (CFrd) <x; Ry/~y/~y>

Deceptive Read Destructive Coupling Fault

(CFdrd)
<x; Ry/~y/y>

Incorrect Read Coupling Fault (CFir) <x; Ry/y/~y>

Disturb Coupling Fault (CFds)
<Rx; y/~y/->,

<xWy; z/~z/->

Figure 2. Hierarchical test architecture for SoC

SoC

IP

Server

TAP

Mem IP

Sub-

Server

Sub-
Server

Server
Mem

Server

76

Table 3. Two-operation single-cell dynamic faults
Functional fault models Fault primitives

dynamic Read Destructive Fault (dRDF)
<xWyRy/~y/~y>,

<xRxRx/~x/~x>

dynamic Deceptive Read Destructive Fault

(dDRDF)

<xWyRy/~y/y>,

<xRxRx/~x/x>

dynamic Incorrect Read Fault (dIRF)
<xWyRy/y/~y>,

<xRxRx/x/~x>

dynamic Transition Fault (dTF)
<xWyW(~y)/y/->,

<xRxW(~x)/x/->

dynamic Write Destructive Fault (dWDF)
<xWyWy/~y/->,

<xRxWx/~x/->

Table 4. Two-operation two-cell dynamic faults
Functional fault models Fault primitives

dynamic Read Destructive Coupling

Fault (dCFrd)

<x; yWzRz/~z/~z>,

<x; zRzRz/~z/~z>

dynamic Deceptive Read Destructive

Coupling Fault (dCFdrd)

<x; yWzRz/~z/z>,

<x; zRzRz/~z/z>

dynamic Incorrect Read Coupling Fault

(dCFir)

<x; yWzRz/z/~z>,

<x; zRzRz/z/~z>

dynamic Transition Coupling Fault

(dCFtr)

<x; yWzW(~z)/z/->,

<x; zRzW(~z)/z/->

dynamic Write Destructive Coupling

Fault (dCFwd)

<x; yWzWz/~z/->,

<x; zRzWz/~z/->

dynamic Disturb Coupling Fault (dCFds)

<xWyWt; z/~z/->,
<xWyRy; z/~z/->,

<xRxWy; z/~z/->,

<xRxRx; z/~z/->

In addition, there is another class of faults, which mainly

appear during the system operating mode (in the field). Those

are called aging faults. Long-term performance degradations

may activate physical defects in the system, due to transistors

aging. The main aging effects cause NBTI (Negative Bias

Temperature Instability) and PBTI (Positive Bias

Temperature Instability) [11]. These effects shift the threshold

voltage of a transistor, which causes bit-cell stuck-at, bit-cell

transition, coupling, delay faults and sense amplifier failures.

Different types of memory tests were proposed, but the most

efficient way of testing memories is the class of March tests

[6]. It consists of a sequence of March elements, where each

of them consists of March operations applied to a memory cell

(write 0, write 1, read 0, read 1) with a fixed addressing order.

Most of the currently used test algorithms are based on March

tests.

Test generation flow for manufacturing test

The test generation flow for manufacturing test consists of the

following steps:

1. Create test sessions, i.e., which group of memories will be

tested (in parallel) in the first session, which group in the

second session, and so forth;

2. Select the test algorithm dedicated for production mode;

3. If a fault is detected, then repair analysis is done and if the

fault is repairable, then repair signature is calculated and

stored in non-volatile memory (e.g., Fuse). Further on,

during POST, this information will be read from non-

volatile memory and the corresponding memory will be

repaired before running BIST in POST mode.

3.2. In-Field Test Generation Flow
Memory BIST approach for in-field testing has some

architectural differences from the production mode BIST.

Typical memory BIST architecture being used in production

mode is shown in Figure 3. It consists of the following

modules:

• Test access port (TAP) – JTAG port [12], which is used to

apply test vectors to the device under test;

• Controller;

• Test algorithm register (TAR) – contains memory test

algorithms;

• Background pattern generator (BPG);

• Address generator (AG) – selects the memory range to be

tested;

• Comparator – checks whether the test has passed or failed.

This architecture is not applicable for the memory testing in

mission mode for the following reasons:

• There is no JTAG test access port in mission mode;

• The content of the memory must be maintained after the

test;

• Test time constraints require to test memory with the small

bursts.

To solve this problem, BIST architecture is modified with the

following components (Figure 4) [13]:

• New test access port is added for system test;

• Reserve register is added to maintain content of the

memory under the test;

• Address generator is modified to enable burst mode.

Considering all the above mentioned, the in-field test

generation flow will be as follows:

Test generation flow for POST

1. Check the checkers, i.e., the safety mechanisms, such

BIST fault detection capability, ECC error detection and

correction capability, etc.;

2. Load repair information from non-volatile memory

collected during production mode;

3. Select the test algorithms dedicated for POST mode;

4. Run the BIST.

Test generation flow for mission mode

1. Enable ECC for detecting and correcting transient faults;

2. Identify idle memories (not used in mission mode);

3. Select the test algorithms dedicated for mission mode;

4. Periodically run transparent test for the selected

memories.

Figure 3. Memory BIST architecture in production mode

Figure 4. Memory BIST architecture for automotive

77

4. IMPLEMENTATION OF THE FLOW
The proposed methodology is implemented in a software

automation tool called Yield Accelerator (YA) of Synopsys

DesignWare STAR Memory System [14]. It takes the

following inputs:

1. SoC design information (e.g., the architecture described in

Figure 4).

2. User information on test algorithms, test mode and test

conditions.

Design planning stage

Every SoC project needs to have a planning and designing

stage, where the certain components are developed and

combined together to form an SoC [15]. One of these

components is Design-for-Testability (DFT) infrastructure.

DFT design flow for automotive projects consists of the

following steps:

1. Define memory instances, which should be used in a

project;

2. Configure ECC controllers for memories with soft error

protection requirements;

3. Define memory groups;

4. Set up BIST controller per memory group;

5. Specify test algorithms for production test, POST and

mission mode periodic test, since the set of test algorithms

are different for each stage;

6. Define test access interface for each testing stage.

After design finalization it should be integrated into real SoC

design and verified by testbench simulation. If the simulation

passes, the chip can be sent to production.

For each test mode YA has certain capabilities to enable

testing of a given automotive SoC.

Manufacturing stage

At manufacturing stage, the chip testing is being done by ATE

(automatic test equipment), which runs the test patterns from

top level JTAG interface. For this stage, YA generates test

pattern in STIL (Standard Test Interface Language) file

format [16]. STIL provides an interface between digital test

generation tool and test equipment to transfer the large

volumes of digital test vector data to ATE environments.

POST and mission mode periodic testing stage

During POST and mission mode JTAG is usually disabled

(mainly due to security reasons). Hence, other interfaces are

used for performing POST and mission mode periodic test. In

automotive SoCs there is a safety manager, such as Synopsys

ARC [17], which takes care of POST and mission mode

periodic test.

One of the test interfaces widely used between safety manager

and test mechanisms of SoC is APB interface [18]. While in

order to run a given test pattern in safety manager’s

environment a firmware in C code is required. YA has a

capability:

1. To generate a given test pattern working through APB

interface;

2. To generate a firmware in C code for a given test pattern

to be loaded into safety manager for the execution during

POST or mission mode periodic test [19].

5. CONCLUSION
This paper presents an end-to-end test methodology and

unified test architecture for automotive SoCs. The ISO 26262

functional safety standard and its requirements for testing

automotive SoCs are discussed. Three main stages of test are

described, and for each stage the corresponding test solution

is proposed. Synopsys Yield Accelerator software automation

tool is described where the proposed test methodology is

implemented.

REFERENCES
[1] M. Nicolaidis, “Theory of Transparent BIST for RAMs”,

IEEE Transactions on Computers, vol. 45, no. 10, 1996,
pp. 1141-1156.

[2] A. Dutta, S. Alampally, A. Kumar, R. A. Parekhji, “A
BIST Implementation Framework for Supporting Field
Testability and Configurability in an Automotive SOC”,
Workshop on Dependable and Secure Nanocomputing,
2007.

[3] A. Cook D. Ull M. Elm H. Wunderlich, H. Randoll, S.
Dohren, “Reuse of Structural Volume Test Methods for
In-System Testing of Automotive ASICs”, IEEE Asian
Test Symposium (ATS), 2012, pp. 214-219.

[4] http://www.icinsights.com/

[5] https://www.iso.org/standard/43464.html

[6] A.J. van de Goor, “Testing semiconductor memories:
Theory and Practice”, John Wiley & Sons, Chichester,
England, 1991.

[7] S. Hamdioui, Z. Al-Ars, A.J. van de Goor, “Testing
Static and Dynamic Faults in Random Access
Memories”, IEEE VLSI Test Symposium, 2002, pp. 395-
400.

[8] G. Harutyunyan, S. Shoukourian, V. Vardanian, Y.
Zorian, “A New Method for March Test Algorithm
Generation and Its Application for Fault Detection in
RAMs”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), Volume 31,
Number 6, June 2012, pp. 941-949.

[9] R. W. Hamming, “Error Detecting and Error Correcting
Codes”, Bell System Technical Journal, Vol. 29, No. 2,
pp. 147-160, 1950.

[10] G. Harutyunyan, G. Tshagharyan, V. Vardanian, Y.
Zorian, “Fault Modeling and Test Algorithm Creation
Strategy for FinFET-Based Memories”, IEEE VLSI Test
Symposium (VTS), 2014, pp. 49-54.

[11] Z. Qi, J. Wang, A. Cabe, S. Wooters, T. Blalock, B.
Calhoun, M. Stan, “SRAM-Based NBTI/PBTI Sensor
System Design”, Design Automation Conference, 2010,
pp. 849-852.

[12] IEEE Std. 1149.1, IEEE Standard for Test Access Port
and Boundary-Scan Architecture, 2001.

[13] D. Sargsyan D, “ISO 26262 Compliant Memory BIST
Architecture”, International Conference on Computer
Science and Information Technologies (CSIT), 2017, pp.
164-167.

[14] K. Darbinyan, G. Harutyunyan, S. Shoukourian, V.
Vardanian, Y. Zorian, “A Robust Solution for Embedded
Memory Test and Repair”, IEEE Asian Test Symposium,
2011, pp. 461-462.

[15] G. Tshagharyan, G. Harutyunyan, Y. Zorian, “An
Effective Functional Safety Solution for Automotive
Systems-on-Chip”, IEEE International Test Conference
(ITC), 2017, Paper ET 2.2, pp. 1-10.

[16] 1450-1999 - IEEE Standard Test Interface Language
(STIL) for Digital Test Vector Data.

[17] https://www.synopsys.com/dw/ipdir.php?ds=sw_metaw
are

[18] http://web.eecs.umich.edu/~prabal/teaching/eecs373-
f12/readings/ARM_AMBA3_APB.pdf

[19] D. Sargsyan, “Firmware Generation Architecture for
Memory BIST”, IEEE East-West Design & Test
Symposium (EWDTS), 2018.

78

http://www.icinsights.com/

	DT.pdf (p.85-107)
	DT_Title.pdf (p.1)
	New - Copy.pdf (p.2)
	50_190603_181912_DT_FinalSubmissionCSIT2019_FINAL.pdf (p.3-6)
	53_190607_110134_DT_CSIT_2019_Accurate_Pressure_Calculation_Method.pdf (p.7-10)
	81_190731_112131_DT_CSIT2019_p2_final.pdf (p.11-14)
	82_190731_130632_DT_CSIT2019_p1_final.pdf (p.15-18)
	DT_P_Title.pdf (p.19)
	New.pdf (p.20)
	03_190326_015335_DT_petrosyan1_FINAL.pdf (p.21-23)

	ITCT.pdf (p.142-150)
	ITCT_Title.pdf (p.1)
	New.pdf (p.2)
	73_190710_184356_ITCT_CSIT_Haroutunian_FINAL.pdf (p.3-6)
	69_190628_160849_ITCT_wiretap_csit_FINAL.pdf (p.7-9)

	82_190731_130632_DT_CSIT2019_p1_final.pdf (p.15-18)

