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ABSTRACT 
The issue of developing a control system for compensating 
external disturbances acting on the quadrocopter is 
considered. The proposed design procedure consists in 
introducing a decoupling compensator into the system and 
subsequent synthesis of an adaptive regulator that provides 
compensation of external disturbances. It is shown that by 
virtue of choosing the value of the adaptation gain one can 
reduce the control system error to any arbitrary small value. 
The proposed control architecture can be used for developing 
fault-tolerant control systems of multirotor copters. 
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1. INTRODUCTION
Unmanned aerial vehicles (UAVs) are widely used in 
military and various civilian areas. In the latter case, they are 
used in: controlling traffic; assessment of the state of trunk 
pipelines and high-voltage transmission lines; monitoring the 
technical condition of buildings and other structures, as well 
as railways and roads; detection of fires in forests and 
peatlands; technical support in agricultural works and 
geological exploration, etc. [1-4]. 
In this article, the issue of development of 1L  adaptive 
control system [5, 6] of the angular motion of the quadcopter 
is considered, taking into account the external disturbances 
[7].  

2. DYNAMIC EQUATIONS OF 
QUADCOPTER
A schematic representation of a quadcopter is shown in Fig. 
1, where I I I IO X Y Z  - is the inertial frame (IF), in which 
the motion of the centre of mass of the quadcopter is 
described; OXYZ  - is the quadcopter’s body fixed frame 
with the origin in the centre of mass [7], θ , φ  и ψ   - are 

the pitch, roll and yaw angles, and L   is the distance of each 
motor from the centre of mass O   [7].  
In the general case, the translational motion of the centre of 
mass of the quadcopter with respect to the IF and angular 
motion of the quadcopter in the body fixed frame are 
described by the following nonlinear equations of the sixth 
order [2, 7]: 
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b) 
Fig. 1. Schematic representation of the quadcopter: 

a – coordinate systems, b -  motors locations 

In these equations, m  is the mass of the quadcopter; g - the 

gravitational constant; xI , yI , zI  - the moments of inertia 

with respect to ,OX  OY , OZ  axes; zu - the lift force 

along the vertical axis I IO Z ; uθ , uφ , uψ - the control 

thrusts around the principal axes of inertia; xγ , yγ , zγ - and
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θγ , φγ , ψγ  - the unknown external disturbances (for

example, wind gusts); TJ  - the moment of inertia of each 
motor; Ω , the overall speed of propellers: 

1 2 3 4Ω = −Ω −Ω +Ω +Ω ,   (7) 

where iΩ  is the i th propeller speed.

Note that all variables in the equations (1) - (7) are functions 
of time t . However, for brevity, the dependence of these 
variables on t  is not explicitly indicated.  
The main feature of the quadcopter control system is that 
there are only four control signals, namely the voltages 

1 2 3, ,u u u  and 4u at the inputs of the motors, and the

generated thrusts iT  of all four motors are directed parallel 

to the axis OZ . Such configuration does not give an 
opportunity to control all six degrees of freedom of the 
quadcopter. Therefore, as four controllable parameters of the 
motion of the quadcopter are usually chosen the anglesθ , 

φ , ψ  and the altitude z . The control of the movements in

the horizontal plane I I IO X Y  is carried out by changing the 
angles of roll θ  and pitch φ  [2, 7].  
As shown in [7], in case of low angular velocities of the 
quadcopter and small pitch θ  and roll φ  angles, and 
assuming that during the linear movement the yaw angle ψ
is zero, the controlled movements along OZ  axis, as well as 
rotational movements, are approximately described in 
operator form, taking into account the dynamics of the 
motors, by the following linear equations: 

[ ]1 2 3 42 2

1 1( )( )M zz w s u u u u mg
ms ms

γ= + + + − + ,   (8)
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1( )( ) ,M
x x

L w s u u
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where ( )Mw s  describes the dynamics of motors in the form 
of a first order aperiodic transfer function: 

( )

1, 2,3, 4.

i M
M M

i M

T
w s K

u s
i

ω
ω

= =
+

=
    (12) 

Note that the constant coefficients Kψ  in (11) and MK , 

Mω  in (12) are constructive parameters of motors, where 

the value Mω  is inversely proportional to the 

electromechanical time constant of the motor MT , i.e., 

1 /M MTω =  [7]. Note also that all variables in (8)-(12) 

depend on the Laplace operator s , which is not explicitly 
indicated for brevity.  
Introducing the vectors of controllable parameters η =  

[ , , , ]Tz θ φ ψ= , voltages at the inputs of the motors

1 2 3 4[ , , , ]Tu u u u u= , external disturbances [ , ,z θγ γ γ=  
, ]T

φ ψγ γ , and the vector [1 0 0 0]TF = , the equations 

(8) - (11) can be written in the following matrix form:

2

1( ) ( )UW s Ru W s Fg
sγη γ= + − ,            (13) 

where the matrices ( )UW s  and  ( )W sγ  are diagonal [5], 

and the numerical matric R  is equal to 

1 1 1 1
1 1 0 0
0 0 1 1
1 1 1 1

R

 
 − =
 −
 

− − 

  (14)  

and characterizes the above kinematic features of the 
quadcopter.  
Thus, the quadcopter control system belongs to multivariable 
control systems [8, 9], where rigid cross-connections 
between separate channels are characterized by a square 
numerical matrix R  (14). 

3. 1L  ADAPTIVE SYSTEM
Consider 1L  adaptive control system [5] of compensation of 

external disturbances γ  caused by wind gusts. In 
accordance with the design procedure proposed in [7], let us 
introduce into the quadcopter control system a static 
decoupling compensator of the form: 

1

0, 25 0,5 0 0,25
0,25 0,5 0 0,25
0,25 0 0,5 0,25
0,25 0 0,5 0,25

c R−

 
 − Κ = =
 −
 

− − 

,        (15) 

which relates the vector of voltages at the inputs of the 
motors u  with the vector of voltages [ , , , ]T

r zu u u u uθ φ ψ=

at the inputs of the compensator cΚ (15), i.e. c ru u= Κ .
In that case, the matrix block diagram of the control system 
can be represented in the form in Fig. 2, where gik  are static 

gains [5, 7], and the matrix equation (13) takes the simple 
form 

2

1( ) ( ) ,U rW s u W s Fg
sγη γ= + −               (16) 

where, as stated above, the matrices ( )UW s  and ( )W sγ  are 

diagonal. 

Fig. 2. Matrix block diagram of the control system with the 
compensator cΚ (15) 
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Thus, the introduction of the compensator cΚ  (15) leads to 
the independence of the separate control channels of the 
quadcopter. 
Let us consider, for example, the control channel by the pitch 
angle θ  (the control of the other channels of the decoupled 
system is carried out similarly). Based on the equations (9) 
and (12) - (16) we can write 

( )2 2

1M M

Mx x

KL u
sI s I sϑ θ

ω
θ γ

ω
= +

+
.             (17) 

The corresponding block diagram of the system is shown in 
Fig. 3. 

Fig. 3. Block diagram of the pitch cannel of the decoupled 
control system  

The task is to develop an 1L  adaptive controller with a state 
predictor [5], which compensates for the arbitrary, but 
limited (i.e. 0| |θγ ≤ ∆ ) external disturbance θγ . Since the 
control signal of the system after entering the compensator 

cΚ  (15) is the voltage vector ru , let us transfer the

disturbance θγ  in (17) to the point of application of the 

voltage ruθ θ= . Based on the known rules of 
transformation of block diagrams [10], we can write: 

( ) ( )2
M M

E
Mx

KL u
sI s ϑ

ω
θ γ

ω
= +

+
,               (18) 

where the equivalent disturbance Eγ  is 

( )M
E

M M

s
LK
ϑγ ω

γ
ω
+

= .    (19) 

For developing an 1L  adaptive controller, we write the 
operator equation (18) in the state space form: 

[ ] 0
( ) ( ) ( ) ( ) , (0) ,

( ) ( ) ( ),

E
dx t Ax t b u t t x x

dt
y t t cx t

ϑ γ

ϑ

= + + =

= =
    (20) 

where the three-dimensional state vector ( )x t  has the 

following components: ( )tθ , ( ) /d t dtθ , 2 2( ) /d t dtθ , and 

the constant  matrix A  and row- and column-vectors b  and 
c  can be expressed in the following form 

[ ]

0 1 0 0
0 0 1 , 0 ,
0 0 /

1 0 0 .
M M M x

A b
LK I

c

ω ω

   
   = =   
   −   

=

      (21) 

The state predictor has the same structure as the system in 
(20): 

[ ] 0
ˆ( ) ˆˆ ˆ( ) ( ) ( ) , (0) ,

ˆ ˆ( ) ( ),

E
dx t Ax t b u t t x x

dt
y t cx t

θ γ= + + =

=
   (22) 

and the only difference is that the unknown disturbance 
vector ( )E tγ  is replaced by its estimate ˆ ( )E tγ . 

The compensation of the disturbance ( )E tγ  is performed by 
the following adaptive control law [5, 11]: 

ˆ ( ) ( )TEd t b P t
dt
γ

ε= Γ     (23a) 

or 

ˆ ( ) ( )T
E t b P t dtγ ε= Γ ∫ ,               

(23b) 

where ˆ( ) ( ) ( )t x t x tε = −  is the prediction error, P
( 0TP P= > ) is the solution of the Lyapunov equation  

TA P PA Q+ = −     (24) 

for an arbitrary symmetric positive definite function Q
( 0TQ Q= > ). The positive scalar 0Γ >  in (23) is called 
the adaptation gain [5, 11]. 
According to 1L  adaptive control theory [5], the control 

signal ( )u tθ  of the system is given in operator form as 

ˆ( ) ( ) ( ) ( ) ,g r Eu s q s k s sϑ ϑ γ = −              (25)

where ( ) 0r sθ =  is an  one-dimensional reference signal, 

gk  is a static gain, and ( )q s  is the transfer function of a 

low-pass filter, satisfying the DC gain condition (0) 1q =  
[5]. 
The block diagram of the control system with the state 
predictor (22), the adaptive disturbance rejection law (23), 
and the control signal ( )u sθ  (25) is shown in Fig. 4, where 
single lines correspond to scalar signals, and double lines 
correspond to vector ones. 
As shown in [11], the output signal (error) ( )sγϑ  of the 

adaptive system in Fig. 4 caused by the disturbance ( )E sγ
can be written in the operator form as 

[ ] 1
0 0( ) ( ) 1 ( ) ( ) ( ) ( )Es W s q s I W s W s sγϑ γ− = − +  , (26)  

where transfer functions ( )W s  and 0 ( )W s  are 

1( ) ( ) ,W s c sI A b−= −  0 ( ) ( )PRW s W s
s
Γ

= , 

1( ) ( )T
PRW s b P sI A b−= − .     (27) 

Fig 4.  Block diagram of the 1L  adaptive control system with 
the state predictor 
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Note that ( )W s  in (26) and (27) is the transfer function of 
the quadcopter open-loop control system of the pitch channel 
after entering the matrix decoupling compensator cΚ  (15), 

and ( )PRW s  in (27) belongs to the class of Positive Real 
transfer functions, the phase shift of which does not exceed 

o90−  [6, 11].
The equation (26) describes a system, the block diagram of
which is shown in Fig. 5, where the transfer function ( )F sΣ

in the negative feedback loop is given by the expression 

[ ] 1
0 0( ) ( ) ( )F s I W s W s−

Σ = + .   (28) 

Fig. 5. Equivalent block diagram of the adaptive system 
with respect to the disturbance ( )E sγ  

Since the phase shift of the transfer function ( )PRW s  in (27) 

does not exceed o90− , and the integrator in 0 ( )W s  
introduces a constant phase shift o90− , it is obvious that the 
system with the transfer function ( )F sΣ  (28) is stable for 
any value of the adaptation coefficient Γ  [since the locus 

0 ( )W jω  in the complex plane cannot encircle the critical 

( 1, j0)−  point for any values of 0Γ >  and 0ω > ]. 

Moreover, if we assume for simplicity that ( ) 1q s = , then 
from (27) and Fig. 5, it can be seen that for Γ →∞  we 
have ( ) 1F sΣ → , and the error γϑ  tends to zero regardless 

of the magnitude and form of the disturbance ( )E tγ . In 
other words, by choosing the magnitude of the adaptation 
gain Γ  we can reduce the error | |γϑ  to any arbitrarily 
small quantity. 

4. CONCLUSION
The task of developing an adaptive control system for 
compensating external disturbances (for example, wind 
gusts) acting on quadcopter is considered, under the 
assumption that there are no translational motions of the 
quadcopter in the inertial space. The proposed system can be 
used in the development of fault-tolerant control systems for 
multi-rotor UAVs. 
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