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ABSTRACT 
In the present work is considered an approach, according to 

which canonically conjugate colors in the theory of fuzzy sets 

are related to the properties of information functions and non-

commutative linear operators in Gilbert's space: each 

information state corresponds to the estimation of 

compatibility function, every color – to the operator. 

It is supposed that color, as some property (attribute), 

characterizing a condition of a system, can receive different 

values called by eigenvalues of this color. The cases of discrete 

and continuous spectrum of eigenvalues of color are 

considered. The example of calculation of conditional 

computable values of color is given. 

Keywords 
Information functions, canonically conjugate fuzzy subsets, 

color operators. 

1. INTRODUCTION
In the theory of canonically conjugate fuzzy subsets, the main 

ideas of which are formulated in [1-5], the main concept is a 

notation of “color” (property, attribute), characterizing the 

state of an observed system. Under the system state is implied 

the collection of data, which is a result of experts’ 

(experimenter who conducts measurements) activities. The 

idea of introducing this notation, as well as notation of 

canonically conjugate fuzzy subsets, belongs to 

T.Gachechiladze [1].

It’s important to notice that these notations and the quantum

mechanics method of their consideration directly lead to the

theory of color (the new chromo-theory of canonically

conjugate fuzzy subsets).

In the present paper is considered the approach given in [1],

according to which the theory of color, in its usual form, deals

with properties of information functions and the corresponding

operators in a Hilbert space, so that each informational state

corresponds to the estimation of compatibility function, each

color – to the operator.

Suppose that universal set Ω with elements 𝜔 and defined on

it the certain attribute (property) ℘ with numerical

characteristic 𝜉℘ is given. It is supposed that 𝜉℘ is a random

quantity, distribution of probabilities 𝜉℘ ∈ 𝑅 of which is

characterized by the density 𝜌℘(𝑥𝜔).

Suppose then that to each element of  Ω corresponds the color 

℘ and we can prescribe to any  𝜔 ∈ Ω  the measure of its 

compatibility 𝜇℘(𝜔)  with the color ℘. It’s important to notice

that this function depends, besides of 𝜔, from the observer as 

well, who performs the estimation of color ℘. Therefore, the 

role of observer is reduced to the estimation of color ℘ with a 

certain accuracy. 

Following to [1], the information, accessible to the observer, 

as known from [6] is involved in the function  𝜓℘(𝑥𝜔) ∈

𝐿2(𝑅)  and

𝜌℘(𝑥𝜔) = |𝜓℘(𝑥𝜔)|
2

, 𝜔 ∈ Ω.                         (1)

From (1) it follows that together with color ℘ there exists 

another color ℘𝑐 , characterized fully,

𝜌℘𝑐(𝑥𝑐𝜔) = |𝜓℘𝑐(𝑥𝑐𝜔)|
2

, 𝜔 ∈ Ω,   (2) 

where 

𝜓℘𝑐(𝑥𝑐𝜔) = �̂�𝜓℘(𝑥𝜔) =
1

√2𝜋𝑐
∫ 𝜓℘(𝑥𝜔)𝑒−

𝑖

𝑐
𝑥𝑐𝜔𝑥𝜔𝑑𝑥𝜔𝑅

   (3)

is a Fourier transformation of the function 𝜓℘(𝑥𝜔) and 𝑐 is a

constant. 

The color ℘𝑐  is called canonically conjugate with respect to

 [1]. As a result, we can conclude that along with fuzzy 

subset Ω̃ there exists its canonically conjugate subset Ω̃𝑐. 

Moreover, the existence of canonically conjugate colors ℘ and 

℘𝑐  of 𝜔 ∈ Ω  is characterized by the conditional instances

(moments) (𝑀𝜉℘
, 𝜎℘

2) and (𝑀𝜉℘𝑐 , 𝜎℘𝑐
2 ) of mathematical

expectation and dispersion of random variables 𝜉℘(𝜔) and

𝜉℘𝑐 , respectively, where 𝜉℘𝑐 is a numerical characteristic of

the  color ℘𝑐 .  Between canonically conjugate colors ℘ and

℘𝑐  is close connection. For its clarification one can correspond

them noncommutative linear operators, mapping the Hilbert 

space of functions 𝜓℘(𝑥𝜔) into itself [6].

2. COLOR OPERATOR
Let’s consider some attribute (color)  characterizing the 

system state. Under the system state is implied the set of data, 

which is a result of experimenters’ or experts’ activities. For 

example, expert study the compatibility function (that is define 

information function). Strictly speaking, in our judgment we 
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should talk not about one color, but about many colors 

instantaneously. However, this doesn’t change the reasoning 

and for brevity and simplicity we will consider only one color 

below. Values, that can take one color are named as 

eigenvalues and their set - as a spectrum of eigenvalues of 

color . The spectrum, evidently, may be discrete or 

continuous. 

At first, we suppose that spectrum of color  is discrete. 

Eigenvalues are denoted by 𝑥𝜔𝑛(𝑛 ∈ 𝑁). Using Dirac’s

bracket notations, denote by |𝑥𝜔𝑛;  ℘⟩ an information function

of the system in a state when color  has a value 𝑥𝜔𝑛. Remark

that under the information function of color  we consider 

the following expression: 

|𝑥𝜔𝑛;  ℘⟩ = √𝜌℘(𝑥𝜔𝑛)𝑒𝑖𝜑℘,  (4) 

where real 𝜑 is an arbitrary phase. 

These informational functions are named as eigenfunctions of 

the given color . Each of these functions are normed: 

∫ ||𝑥𝜔𝑛;  ℘⟩|
2

𝑑𝑥𝜔 = 1
𝑅

. 

It is not necessary that the system is in some “eigen”-state with 

information function |𝑥𝜔𝑛;  ℘⟩. The expert creates the state

(estimating the values of ) as a result of his intellectual 

activity, gives one of the eigenvalues (makes decision that the 

value of color is equal to 𝑥𝜔𝑛). It is necessary to mention that

as the intervals, corresponded to different colors, generally are 

overlapping, thus this fact should be considered in a model. 

One of the possibilities consists of letting the superposition 

principle to be valid for information functions. Regarding this 

principle the information function |𝑥𝜔;  ℘⟩ must be a linear

combination of functions |𝑥𝜔𝑛;  ℘⟩  corresponding to the

values  𝑥𝜔𝑛, which can be observed with different from zero

compatibility, when the expert is making the estimation of 

system state. 

Thus, in case of general state, the information function 
|𝑥𝜔;  ℘⟩ can be expanded in the series:

|𝑥𝜔;  ℘⟩ = ∑ 𝑎𝑛|𝑥𝜔𝑛;  ℘⟩,𝑛  (5) 

where summation is performed by all n and 𝑎𝑛 are some

constants coefficients. 

Thus, we conclude that any information function can be 

expanded by eigenfunctions of arbitrary color. The function 

system, by which any information function can be expanded, 

is a full system of information functions. 

The mathematical model reflects the influence of 

measurements or expert estimation on a state (collection of 

data) of a system and permits to calculate mean value of 

estimated color ℘  of an object in any state |𝑥𝜔;  ℘⟩. In it the

correspondence between the color ℘  and the linear Hermitian 

operator ℘̂ is given. Eigenvectors of this operator are state 

vectors |𝑥𝜔𝑛;  ℘⟩, in which ℘ takes a certain value 𝑥𝜔𝑛. They

are the eigenvalues of this operator: 

℘̂|𝑥𝜔𝑛;  ℘⟩ = 𝑥𝜔𝑛  |𝑥𝜔𝑛;  ℘⟩.  (6) 

Such definition can be made because the eigenvectors of linear 

Hermitian operator form the system of orthogonal normed 

vectors. The representation of observed color ℘ by linear 

operator ℘̂, which satisfies the equation (6) is convenient also 

because the operator ℘̂ transforms the state vector |𝑥𝜔;  ℘⟩ in
another vector |𝑥′𝜔;  ℘⟩,

℘̂|𝑥𝜔;  ℘⟩ =  |𝑥′𝜔;  ℘⟩  (7) 

in such a way that the projection of the vector |𝑥′𝜔;  ℘⟩ on
|𝑥𝜔;  ℘⟩ is a mathematical expectation in the state |𝑥𝜔;  ℘⟩:

𝑥𝜔
∗ ≡ 𝑀𝜉℘ = 〈℘̂〉 = ⟨𝑥𝜔;  ℘|𝑥′𝜔;  ℘⟩ = ⟨𝜔; ℘|℘̂|𝑥𝜔;  ℘⟩. (8)

Analogously,   

℘̂𝑐|𝑥𝑐𝜔; ℘𝑐⟩ = 𝑥𝑐𝜔|𝑥𝑐𝜔; ℘𝑐⟩,  (9) 

℘𝑐|𝑥𝑐𝜔; ℘𝑐⟩ = |𝑥𝑐𝜔
, ; ℘𝑐⟩,

and 

𝑥𝑐𝜔
∗ ≡ 〈℘̂𝑐〉 = �̂��̂�𝜉℘𝑐(𝜔𝑐) = ⟨𝑥𝑐𝜔;  ℘𝑐|𝑥𝑐𝜔

, ⟩ =

= ⟨𝑥𝑐𝜔;  ℘𝑐|𝑥𝑐𝜔;  ℘𝑐⟩.

It is known [6] that the operators ℘̂ and ℘̂𝑐  are related with the

following commutative relationship: 

℘̂℘̂𝑐  −  ℘̂𝑐℘̂ = 𝑖𝑐�̂�,

where �̂� is an operator of identical transformation. This 

relationship defines the quantitative relation between 

canonically conjugate colors and limits their simultaneous 

“measurability”. If we follow to Weyl, according to [1], the 

relation between the canonically conjugate colors ℘ and ℘̂ is 

defined in a form of the principle of uncertainty for dispersions 

𝜎℘
2 and 𝜎℘𝑐

2  of canonically conjugate colors [2,3]: 

𝜎℘
2 𝜎℘𝑐

2 ≥
𝑐2

4
 . 

Suppose, 𝜉℘ is a value of some attribute ℘ with continuous

spectrum. Its eigenvalues will be denoted by 𝑥℘(𝜔) and

corresponding eigenfunctions – by |𝑥℘(𝜔);  ℘⟩. As any

information function of ℘ with discrete spectrum can be 

decomposed in series (5), information function with 

continuous spectrum can be decomposed in integral. Such 

decomposition has the following form: 

|𝑥𝜔;  ℘⟩ =  ∫ 𝑎℘(𝑥′𝜔)|𝑥′℘(𝜔);  ℘⟩𝑑𝑥′℘(𝜔).
𝑅

 (10) 

In case of the continuous spectrum, a special consideration is 

necessary for the question of information function’s 

normalization, because the equality to one of the integral from 

module square of information function cannot be satisfied. 

Instead we will normalize the function |𝑥℘(𝜔);  ℘⟩ in such a

way that  |𝑎℘(𝜔)|
2
 represents the probability of color ℘ in

interval 𝑥℘(𝜔) and 𝑥℘(𝜔) + 𝑑𝑥℘(𝜔). Because the sum of all

values of  𝜉℘(𝜔) will be equal to one, then

∫ |𝑎℘(𝜔)|
2

𝑑𝑥𝜔 = 1 (compare with ∑ |𝑎𝑛|2
𝑛 = 1).

𝑅
  (11) 

From the last formula it is clear, that integral in (11) must be 

an expression, bilinear with respect to |𝑥𝜔;  ℘⟩ and
|𝑥𝜔;  ℘⟩+ = ⟨𝑥𝜔; ℘|. It must be equal to 1 for appropriate

normalization of |𝑥℘(𝜔);  ℘⟩. Thus, in discrete case we must

have the following equality: 

∑ 𝑎𝑛
∗

𝑛 𝑎𝑛 = ∫ ⟨𝑥𝜔; ℘|𝑥𝜔;  ℘⟩𝑑𝑥𝜔𝑅
.

Similarly, in continuous case we will have: 

∫ |𝑎℘(𝜔)|
2

𝑑𝑥𝜔𝑅
= ∫ ⟨𝑥𝜔; ℘|𝑥𝜔;  ℘⟩𝑑𝑥𝜔𝑅

.  (12) 

In accordance with (10) we can write: 

∫ ⟨𝑥𝜔; ℘|𝑥𝜔;  ℘⟩𝑑𝑥𝜔𝑅
=

= ∫ 𝑑𝑥𝜔𝑎℘
∗ (𝜔)

𝑅 ∫ ⟨𝑥℘(𝜔); ℘|𝑥′℘(𝜔);  ℘⟩𝑑𝑥′℘(𝜔)
𝑅

. 

After the comparison of  two expressions we find: 
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𝑎℘(𝜔) = ∫ ⟨𝑥℘(𝜔); ℘|𝑥′𝜔;  ℘⟩𝑑𝑥′𝜔𝑅
.  (13) 

Note that analogously we receive the discrete variant of (13): 

𝑎𝑛 = ∫ ⟨𝑥℘(𝜔); ℘|𝑥′℘(𝜔);  ℘⟩𝑑𝑥′𝜔𝑅
.                  (14)

To receive the normalization condition of proper information 

functions, put (14) in (13): 

𝑎℘(𝜔) =

= ∫ 𝑎′℘(𝜔) (∫ ⟨𝑥℘(𝜔); ℘|𝑥′℘(𝜔);  ℘⟩𝑑𝑥′𝜔𝑅
(𝜔)) 𝑑𝑥𝜔𝑅

 . 

This expression must be valid for any values of 𝑎℘(𝜔) and,

therefore, must be fulfilled identically. From these judgments 

we can deduce that 

∫ ⟨𝑥℘(𝜔); ℘|𝑥′℘(𝜔);  ℘⟩𝑑𝑥′℘𝑅
(𝜔) = 𝛿 (𝑥′℘(𝜔) − 𝑥℘(𝜔)) .           

(15) 

This formula represents the rule of normalization of proper 

information functions in the case of continuous spectrum. For 

the discrete case we have 

∫ ⟨𝑥𝜔𝑛; ℘|𝑥𝜔𝑚;  ℘⟩𝑑𝑥𝜔𝑛𝑅
= 𝛿𝑚𝑛.  (16) 

where 𝛿𝑚𝑛 is a Kronecker delta symbol. As | |𝑥𝜔;  ℘⟩ |2

represents the probability of 𝑥𝜔 in a given interval

(𝑥𝜔 , 𝑥𝜔 + 𝑑𝑥𝜔), the quantity |𝑎℘(𝜔)|
2
 represents the

probability the 𝜉℘(𝜔) is in the interval (𝜉℘(𝜔), 𝜉℘(𝜔) +

𝑑𝜉℘(𝜔)).

There exists a color which has the discrete spectrum in the first 

part of its values and the continuous spectrum - in another one. 

In such a case the full system of eigenfunctions is formed from 

the totality of eigenfunctions of both spectrums. Expansions 

by such functions have the following form: 

|𝑥𝜔;  ℘⟩ = ∑ 𝑎𝑛|𝑥𝜔𝑛;  ℘⟩ +𝑛  ∫ 𝑎𝜉℘
(𝜔)|𝑥𝜔;  ℘⟩𝑑𝑥𝜔 .

𝑅
  (17) 

where the sum is taken by the discrete spectrum and the 

integration - by the continuous. 

The theory of colors in its usual form deals with the 

characteristics of information vectors and the corresponding 

operators in Hilbert space: each information state corresponds 

to the estimation of compatibility function, each color – to 

operator.  

There are several formulations, in the bound of which the 

information function in phase space (Cartesian product of 

universal set  𝑅 on its canonically conjugate 𝑅𝑐) is related to

information state or with estimation of experts (observable) 

colors. Such formalism is based on the Weyl transformation 

[7]. Information eigenvectors of colors ℘ and ℘𝑐  or

eigenvectors of operators ℘̂ and ℘̂𝑐  satisfy the equations of

eigenvalues (6) and (9). The full system of eigenvectors 

satisfies the completeness condition, which we present here in 

a form:  

∫ 𝑑𝜉℘(𝜔)|𝜉℘(𝑥𝜔);  ℘⟩⟨𝜉℘; ℘| =�̂�,  (18) 

and 

∫ 𝑑𝜉℘𝑐(𝜔𝑐)|𝜉℘𝑐(𝑥𝑐𝜔);  ℘𝑐⟩⟨𝜉℘𝑐(𝑥𝑐𝜔); ℘𝑐| =�̂�𝑐 .    (19)

where �̂� (�̂�𝑐) is the unit operator in Hilbert space.

Orthogonality conditions are presented by formulae (15) and 

(16). Commutation relations for canonically conjugate colors 

will be written in a form: 

[℘̂, ℘̂] = 0,   [℘̂𝑐 , ℘̂𝑐] = 0, [ ℘̂, ℘̂𝑐] = −2𝜋𝑖𝑐�̂��̂� ,    (20) 

where �̂� is a unique Cartesian tensor (three-tensor) of the 

components 𝛿𝑖𝑗 (Kronecker symbol, 𝑖, 𝑗 = 1,2,3).

In 𝑥𝜔-representation to eigenvector |𝑥𝑐𝜔;  ℘𝑐⟩ corresponds to

the information function: 

⟨𝑥𝜔;  ℘|𝑥𝑐𝜔;  ℘𝑐⟩ = 𝑐−3
2 ⁄ 𝑒

𝑖

𝑐
𝑥𝜔𝑥𝑐𝜔 .                (21)

Using the condition of completeness (18), (19) and introducing 

the new variables of integration  

𝑥′𝑐𝜔 = 𝑥𝑐𝜔 −
1

2
𝑢,    𝑥′𝜔 = 𝑥𝜔 +

1

2
𝑣,  

𝑥"𝑐𝜔 = 𝑥𝑐𝜔 +
1

2
𝑢,    𝑥"𝜔 = 𝑥𝜔 −

1

2
𝑣,  

or (𝑥′𝜔 , 𝑥"𝜔, 𝑥′𝑐𝜔 , 𝑥"𝑐𝜔) → (𝑥𝜔, 𝑥𝑐𝜔 , 𝑢, 𝑣) with Jacobian

equal to one, the following equality for an arbitrary operator 

�̂� can be written [7]: 

�̂� = (2𝜋𝑐)−3 ∫ 𝑑𝑥𝑐𝜔𝑑𝑥𝜔𝑅
𝑊(𝑥𝜔; 𝑥𝑐𝜔)∆̂(𝑥𝜔; 𝑥𝑐𝜔),    (22)

 where the function 

𝑊(𝑥𝜔; 𝑥𝑐𝜔) = ∫ 𝑑𝑢 ∙ 𝑒
𝑖

2𝜋𝑐
𝑥𝜔𝑢

𝑅
⟨𝑥𝑐𝜔 +

1

2
𝑢|𝑥𝑐𝜔 −

1

2
𝑢⟩   (23) 

is called the Weyl transformation of operator �̂� by the 

operators ℘̂ and ℘̂𝑐  , and

∆̂(𝑥𝜔; 𝑥𝑐𝜔) = ∫ 𝑑𝑣 ∙ 𝑒−
𝑖

2𝜋𝑐
𝑥𝑐𝜔𝑥𝜔 |𝑥𝜔 +

1

2
𝑣;  ℘⟩ ⟨𝑥𝜔 −

𝑅
1

2
𝑣; ℘|.  (24) 

This Hermitian operator doesn’t depend on �̂�. 

Thus, each operator (q-number) can be corresponded to the c-

number. If �̂� is a Hermitian operator, then 𝑊(𝑥𝜔 , 𝑥𝑐𝜔) is a real

function. 

If as an �̂� to take the operator of characteristic function of color 

℘ × ℘𝑐  [4, 5],

�̂�(𝛼1, 𝛼2) = 𝑒𝑥𝑝[𝑖(𝛼1℘̂ + 𝛼2℘̂𝑐)],

then the formula (23) takes the following form: 

𝑊℘× ℘𝑐(𝑥𝜔, 𝑥𝑐𝜔) =

=
1

2𝜋
∫ ⟨𝑥𝜔 − 𝜋𝑐𝑣|𝑒−𝑖𝑣𝑥𝑐𝜔|𝑥𝜔 + 𝜋𝑐𝑣⟩𝑑𝑣

𝑅
.  (25) 

The formula (25) for the density 𝑊℘× ℘𝑐(𝑥𝜔, 𝑥𝑐𝜔) allows to

calculate the conditional computable values of color.  

Let’s introduce the conditional characteristic function of color: 

𝑀(𝛼|𝑥𝜔) =
1

𝜌℘(𝑥𝜔)
∫ 𝑊℘× ℘𝑐(𝑥𝜔, 𝑥𝑐𝜔)𝑒𝑖𝛼𝑥𝑐𝜔𝑑𝑥𝑐𝜔 =

𝑅

=
1

𝜌℘(𝑥𝜔)
∫ 𝑑𝑥𝑐𝜔𝑒𝑖𝛼𝑥𝑐𝜔

1

2𝜋
∫ ⟨𝑥𝜔 −

𝑐𝛼′

2
; ℘|𝑥𝜔 +

𝑐𝛼′

2
; ℘⟩

𝑅
×

𝑅
     

× 𝑒−𝑖𝛼𝑥𝑐𝜔𝑑𝛼′ =
1

𝜌℘(𝑥𝜔)
∫ 𝑑𝛼′ ⟨𝑥𝜔 −

𝑐𝛼′

2
; ℘|𝑥𝜔 +

𝑐𝛼′

2
; ℘⟩ ×

𝑅

1

2𝜋
∫ 𝑒𝑖(𝛼𝑐−𝛼′𝑐)𝑥𝑐𝜔𝑑𝑥𝑐𝜔 =

𝑅

1

𝜌℘(𝑥𝜔)
⟨𝑥𝜔 −

𝑐𝛼

2
; ℘|𝑥𝜔 +

𝑐𝛼

2
; ℘⟩. 

(26) 

Supposing 

|𝑥𝜔;  ℘⟩ = 𝜌℘

1
2⁄

(𝑥𝜔)𝑒
𝑖

𝑐
𝑆(𝑥𝜔)

 ,   (27) 

one can write the logarithm 𝑀(𝛼|𝑥𝜔), or “cumulant” function

in a form: 

𝐾(𝛼|𝑥𝜔) = ln 𝑀(𝛼|𝑥𝜔) =
1

2
𝑙𝑛𝜌℘ (𝑥𝜔 +

𝑐𝛼

2
) +

1

2
𝑙𝑛𝜌℘ (𝑥𝜔 −

𝑐𝛼

2
) − 𝑙𝑛𝜌℘(𝑥𝜔) +

𝑖

𝑐
(𝑆 (𝑥𝜔 +

𝑐𝛼

2
) − 𝑆 (𝑥𝜔 −

𝑐𝛼

2
)).   (28) 
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Thus, for cumulants �̅�𝑛(𝑥𝜔) of the given distribution

(coefficients attached to 
1

𝑛!
(𝛼𝑐)𝑛 in Taylor series of 𝐾(𝛼|𝑥𝜔)

we receive the following expression: 

�̅�2𝑛+1(𝑥𝜔) = (
𝑐

2i
)

2𝑛 𝑑2𝑛+1

𝑑𝑥𝜔
2𝑛+1 𝑆(𝑥), 𝑛 = 0,1, ⋯  (29) 

�̅�2𝑛(𝑥𝜔) = (
𝑐

2i
)

2𝑛 𝑑2𝑛

𝑑𝑥𝜔
2𝑛 𝑙𝑛𝜌℘(𝑥𝜔), 𝑛 = 0,1, ⋯  (30) 

The quantities �̅�𝑛 are simply connected with calculated values
(𝑥"𝑐𝜔)𝑥𝜔

∗ . Particularly, for 𝑛 = 1 we have:

�̅�1(𝑥𝜔) = (𝑥𝑐𝜔)𝜔
∗ =

𝑑𝑆

𝑑𝑥𝜔
 .  (31) 

This permits to interpret the argument of complex function 
|𝑥𝜔;  ℘⟩, 𝑆(𝑥𝜔) as potential of conditional calculated values

(conditional mathematical expectation). 

The conditional dispersion of color ℘𝑐  is:

�̅�2(𝑥𝜔) = 𝜎℘𝑐
2 = (𝑥𝑐𝜔

2 )∗ − (𝑥𝜔
∗ )2 =

𝑐2

4

𝑑2

𝑑𝑥𝜔
2 𝑙𝑛𝜌℘(𝑥𝜔).   (32)

Asymmetry of distribution is determined only by its odd semi-

invariants. Thus, asymmetry of conditional distribution of 

numerical values of canonically conjugate color depends only 

on 𝑆(𝑥𝜔).
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