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ABSTRACT 
Due to the increased complexity in actuators and sensors, 
unmanned ground vehicles have a better chance to generate 
faults in the course of operation. An untreated fault can 
result in a failure, which may lead to catastrophic 
consequences. In this paper, we propose a deep learning 
method using both input and output signals of the vehicles to 
learn the features of different faults reflected in the dynamic 
models of unmanned vehicles. We have applied the proposed 
method to detect and classify multiplicative and additive 
faults, as well as the faults that result in malfunction of the 
actuators. The results show that the proposed deep learning 
method can accurately detect and classify multiple types of 
faults, which are caused by different sources.  
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1. INTRODUCTION
Unmanned ground vehicles (UGVs) can be used for many 
applications where it may be inconvenient, dangerous or 
impossible to have a human driver present. Normally UGVs 
are equipped with multiple sensors and actuators. In recent 
years, the number of sensors and actuators on UGVs has 
been increasing. As a result, the chance of faults occurring 
increases. Many fault diagnosis algorithms have been 
proposed to ensure the safe operation of the vehicle. In the 
literature, the research on fault detection and classification 
has been active over the past thirty years. With more and 
more advanced control algorithms, there is a growing 
demand for fault tolerance, which can be achieved not only 
by improving the individual reliabilities of the functional 
units but also by efficient fault detection, isolation and 
accommodation [1, 2].  

Deep learning, which refers to representation learning with 
multiple layers of nonlinear transformation [3], has been 
developed to tackle problems in fault detection and fault 
tolerance for different applications. Compared with 
traditional fault detection methods such as system 
identification method, Deep Neural Network (DNN) based 

fault detection can achieve faster and more accurate results 
[4]. Unlike traditional machine learning methods, DNN 
consists of many deep layers to extract high-level 
representations from the original inputs. The output of 
hidden layers contains the features of different levels. 
Compared with traditional shallow models, which have the 
problems of lacking expression capacity, using deep learning 
theory can effectively extract characteristics and accurately 
recognize the health condition of the components. As a 
result, fault diagnosis and prognosis based on deep learning 
have been an active, productive and promising research field. 

Since the deep belief network (DBN) was applied to aircraft 
engine fault diagnosis by Tamilselvan in 2013 [5], more and 
more scholars have applied deep learning to the field of fault 
diagnosis and prognosis, and obtained many research results. 
In [6], the authors proposed a new algorithm for detecting 
and identifying faults. The most important innovations are 
image-based processing and classification using deep neural 
networks. They also used time-frequency graphs to represent 
the one-dimensional signal. In [7], a fault-tolerant control 
method based on deep learning is proposed for the multi-
displacement sensor fault of a wheel-legged robot with a 
new structure. Unlike most methods that only detect a single 
sensor, the proposed method can detect a large number of 
sensors simultaneously and rapidly. In [8], Deep Auto 
Encoders (DAEs) are developed to automatically and 
accurately identify bearings faults. The experimental results 
show that the proposed method can remove the dependence 
on artificial feature extraction and overcome the limitations 
of individual deep learning model, which is more effective 
than other intelligent diagnosis methods. With the 
development of wind power, the faults in wind turbines are 
increasing year by year. In [9], based on the strong 
perception and self-learning ability of deep learning theory, a 
fault diagnosis method of wind turbine gearbox based on 
deep belief network and vibration signal is proposed and 
tested. 

The development of deep learning models for fault diagnosis 
of unmanned ground vehicles has been initiated, with more 
work anticipated in the near future. There are three main 
DNN types (i.e., CNN, DBN, and DAE) that can be used for 
deep learning and feature extraction. DBNs and DAEs can 
conduct unsupervised pre-training on the weights, which can 
ease the difficulty of the subsequent supervised training of 
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the deep networks. However, a key problem in DBNs and 
DAEs is that there are too many weights to train when the 
inputs are raw signals or their time-frequency 
representations. In contrast, convolutional neural networks 
(CNNs) can reduce the number of weights to be optimized 
using the strategies of local receptive field and weight 
sharing, which can be effective for reducing computational 
burden during the training process. In this paper, we will use 
CNN for the learning and testing.  

Vehicle faults can occur in actuators, plant dynamics or 
sensors.  Model-based fault detection diagnosis is one major 
branch of the fault detection and diagnosis for unmanned 
ground vehicles. In [10], we proposed a deep learning 
method for fault detection for autonomous vehicles. The 
results show that the algorithm can efficiently detect model 
faults in the system. The new contributions of this paper 
include: 1) applying the deep learning based algorithm to the 
general multiplicative and additive faults in the vehicle 
system dynamic model, and 2) using both system input 
signals and output signals as the inputs to the DNN to 
improve the performance of fault detection. To the best of 
our knowledge, it is the first time in the literature to 
incorporate the input signals into the inputs of DNN for fault 
classification for autonomous ground vehicles.  

The rest of paper is organized as follows: Section II will 
describe the system dynamics and fault models of an over-
actuated electrical vehicle. Section III will propose a deep 
learning based fault detection and classification method. 
Section IV shows the experimental results. Finally in Section 
V, we conclude the paper and give a few future research 
directions. 

2. SYSTEM DYNAMICS AND FAULT
MODELS
The target vehicle is a four-wheel independently driven and 
steered system [15]. The equations of motion for lateral and 
yaw motion are obtained as follows: 

𝑀𝑀��̇�𝑉𝑦𝑦 + 𝛾𝛾𝑉𝑉𝑥𝑥� = 2𝐶𝐶𝑥𝑥 �𝛿𝛿𝑓𝑓 −
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where 𝛿𝛿𝑓𝑓 ∈ 𝑅𝑅1𝑥𝑥1  is the front steering angle input from the 
driver,  𝛿𝛿𝐹𝐹𝑦𝑦  and 𝛿𝛿𝑀𝑀𝑧𝑧  are control lateral force and control 
yaw moment, respectively.  

From equations (1) and (2), the state-space equation can be 
obtained as follows: 

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) 
(3) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝑥𝑥(𝑡𝑡) + 𝑤𝑤(𝑡𝑡)  
(4) 

where 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛𝑥𝑥1 is the state variable, 𝐵𝐵 ∈ 𝑅𝑅𝑚𝑚𝑥𝑥1 is the control 
input, 𝑦𝑦 ∈ 𝑅𝑅𝑝𝑝𝑥𝑥1 is the measurement output, 𝑤𝑤 ∈ 𝑅𝑅𝑝𝑝𝑥𝑥1 is the 
measurement noise.  

2.1. Fault Models 
In this study, we investigate the detection of three different 
actuator faults in vehicles. Fault 1 is the combination of an 
additive fault and a multiplicative fault. Fault 2 is a 
multiplicative fault on the electric motor. Fault 3 is an 
additive fault on the electric motor. Therefore, there are 4 

scenarios: without fault, with multiplicative fault, with 
additive fault, and with both faults. 

Equations for multiplicative and additive faults [11-13] are as 
follows: 

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵[(𝐼𝐼 + 𝛼𝛼)𝐵𝐵(𝑡𝑡) + 𝑓𝑓𝑢𝑢] 

where 𝛼𝛼 ∈ 𝑅𝑅𝑚𝑚𝑥𝑥𝑚𝑚 represents the multiplicative actuator fault 
and is a diagonal matrix with the diagonal elements 𝛼𝛼𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1 

, … ,𝑚𝑚,−1 < 𝛼𝛼𝑖𝑖𝑖𝑖 < 0, 𝐼𝐼  is the identity matrix. The additive 
actuator fault is represented by 𝑓𝑓𝑢𝑢 ∈ 𝑅𝑅𝑚𝑚𝑥𝑥1. It is assumed that 
faults are time-invariant.  

3. DEEP LEARNING METHODOLOGY
3.1. Motivation
Faults can occur in unmanned ground vehicles due to 
electrical or mechanical failures. Without a driver in the 
vehicle, who can identify different faults and take 
appropriate measures, the unmanned ground vehicle needs to 
incorporate fault detection and classification algorithms in 
the system design.   

In this paper, we employ simulated data to validate our 
proposed method. We will first use the vehicle system 
dynamic model and fault models to generate simulated data, 
i.e., the system input signal and the output signals. Then one
input signal and two output signals will be transformed to 2D
signals through wavelet transform. These three-channel 2D
signals are fed to a deep neural network for fault
classification. The output of the network indicates whether
the signal has no fault, fault 1, fault 2 or fault 3.

3.2. Data Generation and Preprocessing 
We use square wave signals with different noises as the input 
to the wheel motors. For each sample data, uniform noises 
with the amplitude of 0.5 are added to input control signal 
u(t), which is fed into the system dynamic and fault models 
to generate two outputs y1(t) and y2(t) for each scenario. 
Fault parameters are set to be 𝛼𝛼𝑖𝑖𝑖𝑖 = −0.45,𝑓𝑓𝑢𝑢 = −0.55. We 
have generated 4000 sample data for training with 1000 
samples for each scenario. Figs.1-3 show a typical example 
of input control signal and corresponding output signals. Fig. 
1 shows the system input signals with faults and without a 
fault. Fig. 2 shows the system output signal lateral velocity 
y1(t) for all four scenarios: without a fault (green), with fault 
1 (blue), with fault 2 (yellow), and with fault 3 (pink). Fig. 3 
shows the system output signal yaw motion y2(t) for all four 
scenarios: without a fault (green), with fault 1 (blue), with 
fault 2 (yellow), and with fault 3 (pink).  

Fig. 1. The system input signals with faults and without a fault 

149



Fig. 2. The system output signal y1(t) for all four scenarios: without 
a fault (green), with fault 1 (blue), with fault 2 (yellow), and with 
fault 3 (pink). 

Fig. 3. The system output signal y2(t) for all four scenarios: without 
a fault (green), with fault 1 (blue), with fault 2 (yellow), and with 
fault 3 (pink). 

In this paper, we propose to use continuous wavelet 
transform (CWT) to transform the 1D input/output time-
domain signals u(t), y1(t), y2(t) into the corresponding 2D 
time-frequency domain images, respectively, which are then 
composed to a 3-channel RGB image I to feed to DNN as 
inputs, as shown in Fig. 4. By adding frequency domain 
information to the time domain data, the inputs to DNN 
contain more salient features and as a result, make it easier to 
identify faults [10].  

3.3. Deep Neural Networks 
One traditional fault detection technique is to use system 
identification and robust residual generation [2, 14, 15, 16]. 
Since system identification-based detection methods require 
more restrictive input signals to obtain accurate system 
models, we can use deep learning in the areas, where system 
identification is not efficient.   

Deep neural networks are a machine learning technique, 
which has the capability to model complex, highly nonlinear 
relationships between the DNN input and fault classification. 
Based on prior domain knowledge and a large amount of 
training data, deep learning can be a powerful and effective 
tool to detect and classify different complex faults in vehicles, 
which will significantly improve the quality and the speed of 

the fault decision process. To be specific, deep learning can 
enable a hierarchical nonlinear learning of high-level 
features built on top of low-level features to detect which 
fault(s) are present. Low-level features are the basic details 
of faults or feature patterns, whereas high-level features are 
more abstract, that is, high-level features can be obtained by 
a series of nonlinear transformations through multiple deep 
layers. 

We train the weights of the deep neural network with 10 
layers, as shown in Fig. 4, which minimize the loss function 
J(w). The size of the normal and fault images is 512 x 512 x 3 
as DNN inputs. The ground truth classification labels of the 
images both normal and faults are fed to the DNN and 
compared with the classification decision from the trained 
DNN model.  

The loss function J(w) is defined as follows: 

min
𝑤𝑤

𝐽𝐽�𝑤𝑤� =���𝑦𝑦𝑛𝑛(𝐼𝐼𝑛𝑛,𝑤𝑤) − 𝑦𝑦𝑡𝑡𝑛𝑛��
2

𝑁𝑁

𝑛𝑛=1
where n corresponds to the n-th sample of training data, N is 
the number of training samples, w is all the parameters of the 
deep neural network, 𝑦𝑦𝑡𝑡𝑛𝑛 is the ground truth label 0 for 
normal class, 1 for fault 1, 2 for fault 2, 3 for fault 3. 

Fig. 4. The schematic of DNN fault detection and classification 

4. RESULTS
The models of many sub-systems of the vehicle are known. 
System identification methods can be used to obtain the 
dynamic models when the models are unknown. In this 
paper, we consider the multiplicative and additive faults that 
may be caused by mechanical or electrical problems. We use 
the system dynamics and fault models of an unmanned 
ground vehicle to simulate vehicle faults to generate data for 
training and testing. In order to detect and classify the faults 
of the UGVs, we propose to use the DNN model based on 
only the input and output signals of the vehicles. 

In [10], the DNN was fed with only output signals for fault 
detection. In this paper, we employ both input signals and 
output signals. This is crucial for the fault classification 
because the combination of input and output signals may 
provide more unique features of the system dynamics, with 
faults and without faults. Moreover, the input distribution 
may not be unique for achieving the same output. Using the 
combination of the input and the output signals as DNN 
inputs will eliminate the ambiguity of the data inputs.   

4.1. Fault Classification 
In this section, we validate the performance of our proposed 
DNN fault classification technique. We use a separate test 
dataset of 2000 images (500 normal images, 500 defect 1 
images, 500 defect 2 images and 500 defect 3 images) to test 

CWT 
u(t) 

CWT 
y1(t) 

CWT 
y2(t) 

I(ch1) 

I(ch2) 

I(ch3) 

DNN 
classification 
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the proposed DNN fault classification. The result is shown in 
Table 1.  In this study, we have demonstrated that the 
proposed DNN technique can effectively detect the faults 
caused by a mechanical vehicle wheel control failure.  

Table 1: Fault Classification Results 

TEST DATASET DETECTION CORRECT RATE 

500 NORMAL SIGNALS 99.00% 

500 FAULT 1 SIGNALS 100.00% 

500 FAULT 2 SIGNALS 100.00% 

500 FAULT 3 SIGNALS 98.40% 

AVERAGE 99.35% 

5. CONCLUSION AND FUTURE WORK
In this paper, we have demonstrated that the proposed deep 
learning method has the ability to effectively perform multi-
fault detection and classification tasks for unmanned ground 
vehicles. In the future, we will extend the algorithm for more 
types of faults and investigate the fault tolerance control 
algorithms for unmanned ground vehicles as well.  
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