
Anomaly Detection using Markov Chain Model 

ABSTRACT 
This paper provides a method of mathematical representation 
of the traffic flow of network states. The flow of states is 
represented as transitions to the Markov Chains. Anomalies 
are interpreted as graph transitions with low probabilities. 

Keywords 
Kernel Methods, Data Analysis, Markow Chain. 

1. INTRODUCTION

Network anomalies becomes a serious threat to countries, 
government agencies, critical infrastructures and business 
organizations. Some attacks are focused on exploiting 
software vulnerabilities to implement denial of service 
attacks, damage or stealing important data, other use a large 
number of infected machines to implement denial-of-service 
attacks. In this paper we focus on detecting network attacks 
by detecting the anomalies in network traffic flow data and 
anomalous behaviour of network applications. The goal is to 
detect the beginning of the attack in a real-time and to detect 
when the system is returned back to the normal state. In this 
paper we are not focusing on the problem of identifying the 
source of the attack and the attack mitigation. 

The network traffic flow data can be represented by a set of 
network-level metrics (amount of packets for different 
protocols, inbound and outbound traffic, etc.) and 
application-level metrics (like the response duration 
histogram for web server). These metrics are collected by the 
traffic analyser at fixed rate. The goal for the state analyser is 
to detect anomalous network and/or application behaviour 
basing on these metrics. 

The input data for the analyser is statistics matrix that 
contains a single row for every traffic time slice. Each row 
contains network-level and application-level features that 
come from different scales. This matrix is the input for 
intrusion detection processes (both training and detection 
steps). 

Our method has two sequential steps. Study and analysis of 
the behaviour of networking datasets and projection of data 
onto a lower dimensional space - training step. This is done 
once and updated as the behaviour of the training set 
changes. During this step we can handle corrupted training 
sets. 

The output from the training step enables online detection of 
anomalies to which we apply automatic tools that enable 
real-time detection of problems. Each newly arrived 
datapoint is classified as normal or abnormal. 
Analysis of the indicators of network traffic reveals represent 
normal behaviour as statistically dependent set, grouped in 
clusters after reduced dimensionality operation, against 

which the representation of anomalies.  Anomalies is not 
statistical connected with the basic set of states. They appear 
as distant from the main cluster points. 

The traffic analyser processes the network packets and 
summarises the network-level statistics. These metrics 
include: tcp flags usage; number of control tcp packets 
(packets without payload); number of data tcp packets 
(packets with payload); number of source (client) packets; 
number of source control packets; number of source data 
packets; number of source data bytes; number of destination 
(server) packets; number of destination control packets; 
number of destination data packets; number of destination 
data bytes. 

TCP-connections could be reassembled to estimate 
application-level metrics. Another sources of application-
level metrics are the log files from applications (like access-
logs on HTTP web server). The analyser processes the 
application logs to collect and summarise application level 
metrics (like total amount or requests, total amount of errors, 
histogram of the response times, histogram of error codes, 
etc). These metrics can be extended by adding other sources 
of behaviour metrics, like e-mail server logs, database server 
logs, cpu/memory metrics. We measure, receive and sense 
many parameters (features) at every pre-determined time 
interval – forming high dimensional data. The challenge are: 
How to cluster and segment high-dimensional data? How to 
find distances in high-dimensional data? How to find 
deviations from normal behaviour? 

Challenge: How to process an “ocean” of data in order to 
find abnormal patterns in the data? How to fuse data from 
different sources (sensors) to find correlations and 
anomalies?  How to find distances in high-dimensional data? 
They do not exist. How can we determine whether a point 
belongs to a cluster/segment or not? The goal is to identify 
points that deviate from normal behaviour which reside in 
the cluster/segment. How we treat huge high dimensional 
data that is dynamically and constantly changes? How can 
we model the high dimensional data to find deviations from 
normal behaviour?   

2. MODEL OF STATES FLOW

The traffic state at each time point can be represented by a 
vector, as shown in Figure1 

Michael Zheludev 
CVC (CyberIcontrol)          

e-mail: qukengue@andex.ru;

m.zheludev@cvcontrol.tech

CSIT Conference 2019, Yerevan, Armenia, September 23-27

154

mailto:qukengue@andex.ru
mailto:m.zheludev@cvcontrol.tech


Figure1: traffic behavior in a single day, represented by 
several general trends. 

Thus, the traffic can be modeled as a random process related 
to the vector X (t), where t is time. Define X={Xt}t the 
dataset of all traffic states X (t), where for each t X (t) 
belongs to n-dimensional space Rn.   

At the training  stage of the algorithm, we collect statistics 
on the behavior of traffic. We group this behavior into 
clusters [1] . Each cluster has its main trend (the center of the 
cluster) and a corridor that characterizes the deviation  in it. 
We define the vertices of the Markov chain associated with 
states through lace. 
The standard behavior of traffic we want to represent as a set 
of vertices of the Markov chain.  

Let 𝐹𝐹 = {𝑓𝑓𝑘𝑘} be the set of traffic behavior patterns defined 
through the cluster centers. 𝑊𝑊 = {𝑤𝑤𝑘𝑘} are corridors of 
variation for each pattern. 
Let's define the lace. 
Definition1. The 𝑊𝑊-quantization measure for 𝐹𝐹 is called 

𝜂𝜂𝑤𝑤(𝐹𝐹) = � #{𝑖𝑖|0 < �𝑓𝑓𝑘𝑘(𝑖𝑖) − 𝑓𝑓𝑝𝑝(𝑖𝑖)� < 𝑤𝑤𝑘𝑘(𝑖𝑖)}
𝑘𝑘≠𝑝𝑝

 

Where #{. } Stands for the power (number of elements) of 
the set 
Definition2. We define the lace as the set 𝐻𝐻 = {ℎ𝑗𝑗}, realizing 
the minimum of the following functional: 

𝐻𝐻 = 𝑁𝑁𝑤𝑤(𝐹𝐹) = ∑ ‖ℎ𝑘𝑘 − 𝑓𝑓𝑘𝑘‖2 + 𝜂𝜂𝑤𝑤𝑘𝑘 (𝐻𝐻)
𝐻𝐻
→ min         (1) 

The traffic state and “ the lace” is illustrated  in Figure2 

Figure2: traffic behavior in left side. The Lace in right side 

2.1  Constrction of “the Lace” 
We associate with the family of vectors 𝐹𝐹 =  {𝑓𝑓𝑖𝑖} the 
graphical form 𝐺𝐺. 

We define 𝐺𝐺 as a matrix of size 𝑚𝑚 × 𝑛𝑛, where 𝑚𝑚 is the 
maximum value of 𝐹𝐹, n is the number of coordinates of each 
of 𝑓𝑓𝑖𝑖. Elements of the matrix 𝐺𝐺 are located in the interval 
[0,1]. For an element of the matrix 𝐺𝐺 with index (𝑝𝑝, 𝑘𝑘) we 
define the intensity by the following formula: 

𝑔𝑔(𝑝𝑝, 𝑘𝑘) = max
𝑟𝑟

𝑒𝑒
[𝑝𝑝−𝑓𝑓𝑟𝑟(𝑘𝑘)]2
𝑊𝑊𝑝𝑝

2(𝑘𝑘)

We obtain a map of the smoothed graph of cluster centers, 
where the thickness of the line is determined by the weight 
(corridor) of the component. 

Figure 3: The map of the smoothness: form 𝐺𝐺. To solve the 
minimization for laces-functional (1) we take as a lace 𝐻𝐻 =
{ℎ𝑗𝑗}, a map of “ridges” (local maximum in the vertical) of 
the form G. There, the closest laces just  mergeed in these 
ridges. We shift the centers of the clusters along the vertical 
form and obtain "the lace". Curves with similar values 
should be merged into a single curve in the lace.  

In the first notations, let the set 𝐹𝐹 =  {𝑓𝑓𝑘𝑘} be the centers of 
clusters.  Define  𝐺𝐺 (𝐹𝐹) , a smoothed map. 
The lace ( set 𝐺𝐺 =  {𝑔𝑔𝑘𝑘},) we get via the form 𝐺𝐺 (𝐹𝐹), as the 
minimization of the functional: 

𝑔𝑔𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑔𝑔
�𝜆𝜆‖𝑔𝑔 − 𝑓𝑓𝑘𝑘‖2 − 𝜙𝜙�𝐺𝐺2

𝑔𝑔

(𝐹𝐹) + 𝛾𝛾 ��
𝜕𝜕𝜕𝜕(𝐹𝐹)
𝜕𝜕𝜕𝜕

�
2

𝑔𝑔

� 

This task can be solved iteratively: 

𝑔𝑔𝑘𝑘(𝑡𝑡 + 1) = 𝜆𝜆𝑓𝑓𝑘𝑘 + 𝜙𝜙
𝜕𝜕𝜕𝜕(𝐹𝐹)
𝜕𝜕𝜕𝜕 �

𝑔𝑔𝑘𝑘(𝑡𝑡)
− 𝜆𝜆

𝜕𝜕2𝐺𝐺(𝐹𝐹)
𝜕𝜕𝑦𝑦2 �

𝑔𝑔𝑘𝑘(𝑡𝑡)

Finally, we obtain   𝑔𝑔𝑘𝑘 = lim
𝑡𝑡→∞

𝑔𝑔𝑘𝑘(𝑡𝑡)  a local maximum for 

𝑁𝑁𝑤𝑤(𝐹𝐹) = �‖𝑔𝑔𝑘𝑘 − 𝑓𝑓𝑘𝑘‖2 + 𝜂𝜂𝑤𝑤(𝐺𝐺)
𝑘𝑘

 

Figure 4: Left - the centers of clusters. Right - lace. 
The x-axis is the time. 

2.2  Constrction of Markow Chain 

We select the key points in time according to the formula 
Key_time = 1: k: t(end), where k be the time interval. 
Each point hi(tj) of the lace at a key point Key_time  is 
corresponds with the vertex of the Markov chain. Each 
vertex of the chain corresponds to a stable state of the traffic 
system. 

Figure 5: Red correspond lace 𝐻𝐻 = {ℎ𝑗𝑗},. Black are the 
vertex of Markow chain E= { hi(tj)}.. If two black points are 
connected by an edge, then the probability of a transition in 1 
step is 1, otherwise 0. 

Let E= 𝑥𝑥1𝑥𝑥2, . . , 𝑥𝑥𝑁𝑁 = {hi(tj)}  be the key points in lace 
corresponds to a stable state of the traffic system. 
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Define the arrows 𝐺𝐺 as all possible pairs of neighboring 
points in laces G= {ℎ𝑘𝑘(𝑡𝑡𝑖𝑖),ℎ𝑘𝑘(𝑡𝑡𝑖𝑖+1)}𝑘𝑘,𝑖𝑖 
So, [xi,xj] belongs to G iff xi=ℎ𝑘𝑘(𝑡𝑡𝑖𝑖),   xj=ℎ𝑘𝑘(𝑡𝑡𝑖𝑖+1). 

Definition3. We denote the lace graph as 𝑉𝑉 = (𝐸𝐸,𝐺𝐺) and 
define the Markov matrix as 𝑃𝑃 =  (𝑝𝑝𝑖𝑖𝑖𝑖). 

𝑝𝑝𝑖𝑖𝑖𝑖 = �0, (𝑖𝑖, 𝑗𝑗) ∉ 𝐺𝐺
1, (𝑖𝑖, 𝑗𝑗) ∈ 𝐺𝐺 

𝑃𝑃 — Matrix transition from state to state in 1 step. 
We define the transition matrix for an arbitrary number of 
steps 

𝑃𝑃� = lim
𝑡𝑡→∞

∑ 𝑃𝑃𝑘𝑘𝑡𝑡
𝑘𝑘=1        (2) 

3. MODEL OF ANOMALIES
Given the new traffic behavior in a single day, 
represented by temporally series y(t) , lace graph 𝑉𝑉 =
(𝐸𝐸,𝐺𝐺) and the Markov matrix 𝑃𝑃, defined in previous training 
stage of the algorithm. 

Figure 6: The representation of Markov Chain 𝑉𝑉 = (𝐸𝐸,𝐺𝐺) 

The goal is the mapping curve y(t) into lace. 

3.1  Splitting traffic curve. 
Splitting traffic is defined as a uniformly distributed set of 
states between the upper and lower boundary of the corridor, 
as shown in Figure9  

Figure 7: Yellow: the lace; green: current traffic; black: the 
traffic splitting. 

Each layer of split traffic is compared with the lace. Looking 
for the lace phrase, most similar to the behavior of traffic. 
Let 𝑋𝑋 = {𝑥𝑥𝑘𝑘} be the splitting traffic curve and 𝐻𝐻 = {ℎ𝑗𝑗} be 
the lace. For each traffic layer 𝑖𝑖, we look for its projection on 
the lace based on the minimization of the functional : 

𝐿𝐿𝑘𝑘(𝑦𝑦) = ‖𝑦𝑦 − 𝑥𝑥𝑘𝑘‖2 + �min
𝑖𝑖

(𝑦𝑦 − ℎ𝑖𝑖)�
2 𝑦𝑦
→ min

Where 𝑦𝑦𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎min
 

(𝐿𝐿𝑘𝑘) 

We seek a solution using map of the smoothness (form 𝐺𝐺) 
via iteration series. 

Xk+1 =Xk+(dG/dy)(Xk) 

As a result, we get the traffic splitting projection onto the 
lace Y = {yk} as shown in Figure 10 

Figure 8: Yellow: the lace; black: splitting of current traffic 
metric after mapping; blue: the lace phrase, most similar to 
the behavior of traffic. 

In notation of 2.2 let {tk} be the key points of the time. 
Then for any moment tk  we have distribution of states 
{Yp(tk)}p. Define pi(k)=#{p| Yp(tk)}= hi(tk)}/N   where N be 
the length of traffic splitting. Then W(k)={pi(k)}i  be 
probability distribution at the time moment k for current 
traffic to be in the lace states. So, we have the representation 
of current traffic behavior via flow of probability distribution 
W(k) to be in the Markov Chain 𝑉𝑉 = (𝐸𝐸,𝐺𝐺) states. 

Figure 9: Left side: projection of traffic splitting into lace. 
Right side: black is the representation of Markov Chain. 
Yellow is flow of probability distribution W(k) 

3.2 The probabilistic model of the 
anomalies. 
At each key point in time, we have a random process  𝑊𝑊 =
 {𝑊𝑊𝑘𝑘}, where at each moment of time 

𝑊𝑊𝑘𝑘 = 〈𝑝𝑝1,𝑝𝑝2, . . , 𝑝𝑝𝑁𝑁〉 
is the probability distribution be in one or another state of the 
lace, N is the length of the splitting,  

�𝑝𝑝𝑖𝑖
𝑖𝑖

= 1,    0 ≤ 𝑝𝑝 ≤ 1 

Now let 𝑀𝑀 be the Markov matrix (2), and 𝑊𝑊 the current 
state. Then  𝑊𝑊𝑓𝑓  =  𝑀𝑀𝑀𝑀 is the probability distribution of the 
transition from a given state to another in the future. 𝑊𝑊𝑝𝑝  =
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 𝑊𝑊𝑇𝑇𝑀𝑀 is the probability distribution of states from which 
one can come to the state 𝑊𝑊. 
Now calculate the transition probability (𝑡𝑡) → 𝑊𝑊(𝑡𝑡 + 1) . If 
the probability is 0, then we assume that this transition is 
anomalous. Let 𝑊𝑊(𝑡𝑡) be the current state, 𝑟𝑟 the parameter of 
the determinism of the model (𝑟𝑟 = 1, the Markov model, 
 𝑟𝑟 >  1, the Bayesian model) 𝑊𝑊(𝑡𝑡 − 1), . . ,𝑊𝑊(𝑡𝑡 − 𝑟𝑟)  are 
previous states. 𝑊𝑊𝑓𝑓(𝑡𝑡 − 1), . . ,𝑊𝑊𝑓𝑓(𝑡𝑡 − 𝑟𝑟)  are the states to go 
from   previous states via Markov chain. The question is: 
what is the relationship with current state W(t) and the 
history of previous states  𝑊𝑊(𝑡𝑡 − 1), . . ,𝑊𝑊(𝑡𝑡 − 𝑟𝑟)  ? 
The following formula shows the probability distribution of 
such a state that   it would be possible to flow from past 
states along the Markov chain 

𝑊𝑊𝑑𝑑𝑡𝑡 = �𝑊𝑊𝑓𝑓

𝑑𝑑

𝑘𝑘=1

(𝑡𝑡 − 𝑘𝑘) 

The following formula characterizes the measure of the 
anomaly of the current state. 

𝑋𝑋𝑋𝑋(𝑡𝑡,𝑑𝑑) = 𝑃𝑃(𝑡𝑡|𝑡𝑡 − 1, . . , 𝑡𝑡 − 𝑑𝑑) = ∑𝑊𝑊(𝑡𝑡)𝑊𝑊𝑑𝑑𝑡𝑡       (4) 

This probability measure (between 0 and 1) shows the 
possibility of being in the current state 𝑊𝑊(𝑡𝑡)  via history of 
past states 𝑊𝑊(𝑡𝑡 − 1), . . ,𝑊𝑊(𝑡𝑡 − 𝑟𝑟). In the case when the 
nonzero probability support of 𝑊𝑊𝑑𝑑𝑡𝑡  overlaps the support of 
the nonzero probability W (t), then the probability of the 
transition between 𝑊𝑊(𝑡𝑡 − 1), . . ,𝑊𝑊(𝑡𝑡 − 𝑟𝑟)  and current state 
W(t) will be 1. Conversely, if the supports are not intersect, 
then the probability of transaction is 0. In this case we have 
an anomaly in 𝑊𝑊(𝑡𝑡) → 𝑊𝑊(𝑡𝑡 + 1). 
Thus, we have obtained a function 𝑋𝑋𝑋𝑋(𝑡𝑡,𝑑𝑑), that 
characterizes the measure of anomaly of the current state. 
The parameter d is associated with long history considered. 
In conclusion, we give some examples of the behavior of the 
anomaly measure on real data. 

Figure 10. Yellow: the lace; Green: traffic metrica; Cyan: 
splitting of current traffic metric after mapping; blue: the 
lace phrase, most similar to the behavior of traffic; Red: the 
anomaly measure 𝑋𝑋𝑋𝑋(𝑡𝑡,𝑑𝑑) 

4. TEST
During research 4 domains from database were tested. 
Anomalies were successfully detected by 97%. Example  

Comparison of the   obtained present method with the 
projection on the PCA [1] we afford in the form of confusion 
matrix 

Column1 anomalies background 

anomalies 0,97 0,03 

background 0,02 0,98 

Table 1: distribution of the “false-positive” and “true-
negative” for the result of presented algorithm. 

Column1 anomalies background 

anomalies 0,63 0,37 

background 0,29 0,71 
Table 2: distribution of the “false-positive” and “true-
negative” for the result of projection on PCA. 
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