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ABSTRACT
Generalizing the result of D. Kazacos for two hypothe-
ses, we consider the ternary detection problem of the
Neyman-Pearson type under mismatch. For the case
of independent identically distributed observations, the
sufficiency condition of existence of test with an expo-
nentially dicreasing probability of error is formulated in
terms of the new notion of ”divergence for three distri-
butions in certain order”.
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1. INTRODUCTION
One of the general problems in statistics is the choice
between different explanations (hypotheses) for the ob-
served data concerning the studied object.

The considerable part in the stream of publications on
the problem make up works and results for the cases of
binary hypotheses and (or) discrete distributions [1]-[8],
[10]-[13], [19], [22].

A natural extention of the binary hypotheses testing
problem is multiple hypotheses testing. We examined
ternary hypotheses under the vector of independent iden-
tically distributed observations.

Our investigation deals only with the case of exponential
convergence of the error probability to zero, under the
presence of mismatch. The exponential rate of decrease
of the error probabilities is considered as a measure of
test performance.

Frequently in practical problems the definition of a spe-
cific cost structure in testing is not possible. In such
cases another, Neyman-Pearson criterion is imposed. In
the present paper we apply this alternative formulation.

We consider the situation in which inaccurate versions
g1(x), g2(x), g3(x) of the true densities f1(x), f2(x),
f3(x) are used in the decision rule.

The reason for using incorrect probability density func-
tions (pdfs) in the test implementation is that a subop-
timal and computationally convenient decision rule may
be preferable due to its simplicity.

In recent years several studies have considered the de-
sign of robust decision procedures [14]-[18], [20], [21],
[24]. A statistical operation is called robust when its
action does not feel small deviations of the situation
from the given model. We may know the exact pdfs,
but it may be expedient to use nominal pdfs. The test
must have a build in tolerance which ensures that the
test is performed appropriately not only for the given
model, but for the entire class of models to the vicinity
of it.

In section 2 the suboptimal binary detection scheme of
D. Kazacos [16] is enlarged to the ternary test. Error
probabilities upper bounds are proved proposing a log-
liklihood ratio test analogical to that used by the author
in [12] to generalize the Neyman-Pearson fundamental
lemma for more than two hypotheses.

In section 3 sufficiency conditions for the existence of a
test are formulated for the case of independent identi-
cally distributed observations using elegant formula for
” the divergence of three distributions in a certain or-
der”.

In section 4 a simple case of a test with exact distribu-
tions is considered.

2. SETUP OF THE ROBUST TEST
Let x = (x1, x2, ..., xN ) ∈ XN be the vector of observa-
tions.

f1(x), f2(x), f3(x) are the true pdfs under three hy-
potheses H1, H2, H3. g1(x), g2(x), g3(x) are the corre-
sponding inaccurate pdfs used in a liklihood ratio (LR)
test for the corresponding hypotheses. The following
assumptions on the pdfs are made for k, l,m = 1, 2, 3 :

(I) fk(x) and gk(x) have common support.

(II) g1(x), g2(x), g3(x) are not equal to each other al-
most everywhere with respect to either of the probabil-
ity measures induced by the pdfs f1(x), f2(x), f3(x).

(III)
∫
fk(x)(gl(x)/gm(x))dx < +∞.

We consider the following log-LR test, that is analogical
to one, which was first applied in [12], for T1 > 0, T2 >
0:

accept H1 if x ∈ A1 =

{x : g1(x)/g2(x) > exp{NT1}, g1(x)/g3(x) > exp{NT1}},
(1)
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accept H2 if

x ∈ A2 = A1 ∩ {x : g2(x)/g3(x) > exp{NT2}}, (2)

accept H3 if x ∈ A3 = A1 ∪ A2. (3)

The probablities αN
k , k = 1, 2, 3, of erroneous acceptance

of other hypotheses, provided that Hk is true, are

αN
k
4
= 1−

∫
Ak

fk(x)dx, k = 1, 2, 3.

The thresholds exp{NT1} and exp{NT2} are chosen so
for achieving error probabilities exponential decreasing
to zero with N →∞.

Theorem 1: Assume that fk(x) and gk(x) have com-
mon support, or equivalently, are absolutely continuous
measures with respect to each other, for k = 1, 2, 3,
N = 1, 2, ... For any s > 0, with

MN (s, Fk, Gl, Gm) = log

∫
fk(x)(gl(x)/gm(x))sdx,

k, l,m = 1, 2, 3,

error probabilities of test defined in (1)- (3) can be upper
bounded as follows:

αN
1 ≤ exp{sNT1 +MN (s, F1, G2, G1)}+

exp{sNT1 +MN (s, F1, G3, G1)}, (4)

αN
2 ≤ min[exp{−sNT1 +MN (s, F2, G1, G2)},

exp{−sNT1 +MN (s, F2, G1, G3)}]+

exp{sNT2 +MN (s, F2, G3, G2)}, (5)

αN
3 ≤ min[exp{−sNT1 +MN (s, F3, G1, G2)},

exp{−sNT1 +MN (s, F3, G1, G3)}]+

exp{−sNT2 +MN (s, F3, G3, G2)}]. (6)

Proof: It follows from (II) that if g1 = 0 then f1 = 0,
thus Pr(g1 = 0|H1) = 0. Denoting by E1 the ex-
pectation under H1 and using the Markov inequality
Pr(z > 1) ≤ Ezs, s > 0 we obtain

αN
1 = F1(A1) ≤ F1(x : g1(x) < g2(x) exp{NT1})+

F1(x : g1(x) ≤ g3(x) exp{NT1}) =

F1(exp{NT1}g2(x)/g1(x) > 1)+

F1(exp{NT1}g3(x)/g1(x) > 1) ≤

exp(sNT1 +MN (s, F1, G2, G1))+

exp{sNT2 +MN (s, F1, G3, G1)}.

For αN
2 and αN

3 estimates (4) and (5) are proved ana-
logically.

The following results [16] are necessary for development
of conditions of the existence of the test.

Theorem 2 ([16]): For (III)
∫
fk(x)gl(x)g−1

m (x)dx <

+∞ for 0 ≤ s < 1− e−1 the first two derivatives of MN

with respect to s exist are finite and can be evaluated by
interchanging integration and differentiation.

We have for s = 0, k, l,m = 1, 2, 3,

M ′N (0, Fk, Gl, Gm) = DN (Fk||Gm)−DN (Fk||Gl) (7)

with

DN (Fk||Gm)
4
=

∫
fk(x) log[fk(x)/gm(x)]dx (8)

Kullback-Leibler divergence between fk(x) and gm(x) .

The second derivative of MN with respect to s is found
in [16], by direct evaluation and by interchanging of
differentiations with integrations, it is nonnegative for
all s and equal to zero only if gl(x) = gm(x), l 6= m,
almost everywhere with respect to the measure induced
by fk(x).

Assumption (II) has, thus, excluded the possibility of

M
′′
N = 0. Under (I), (II), and (III) the function MN is

strictly convex and has the value of 0 at s = 0, and its
derivative at s = 0 is given by (7) as a difference of two
informational divergence expressions.

3. TEST FOR INDEPENDENT
IDENTICALLY DISTRIBUTED
OBSERVATIONS

For the case of independent and identically distributed
(i.i.d) observations, we have assumed that gk(x) are also
of the product form, therefore we have

MN (s, Fk, Gl, Gm) = NM1(s, fk, gl, gm)
4
=

N log

∫
fk(x)[gl(x)/gm(x)]sdx. (9)

From (4), (5), (7) by (9) we discover analogical esti-
mates for αN

1 , αN
2 , αN

3 with MN (s, Fk, Gl, Gm) replaced
correspondingly by NM1(s, fk, gl, gm).

From (7), (8), (9), we find that for k, l,m = 1, 2, 3

M ′1(0, fk, gl, gm) = D1(fk||gm)−D1(fk||gl), (10)

with the corresponding Kullback-Leibler divergences.

We can express the differences of divergences somewhat
briefly. Let us consider and denote by D(fk||fl||fm)

D1(fk||fn)−D1(fk||fl) =

∫
fn(x) log[fk(x)/fm(x)]dx−

∫
fn(x) log[fk(x)/fl(x)]dx =

∫
fk(x) log[fl(x/fm(x)]dx

4
= D(fk||fl||fm).

We propose to conventionally name this expression ”di-
vergence of three distributions fk, fl, fm, in this order”.

Now if we assume that

D(f1||g2||g1) + T1 < 0,
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then with some s1 > 0 we will have

sT1 +M1(s, f1, g2, g1) < 0, for s ∈ [0, s1].

Similarly, if we assume that

D(f1||g3||g1) + T1 < 0,

then with some s2 > 0

sT1 +M1(s, f1, g3, g1) < 0, for s ∈ [0, s2],

if

D(f2||g1||g2)− T1 < 0,

then for some s3 > 0

−sT1 +M1(s, f2, g1, g2) < 0, for s ∈ [0, s3],

if

D(f2||g1||g3)− T1 < 0,

then for s4 > 0

−sT1 +M1(s, f2, g1, g3) < 0, for s ∈ [0, s4],

if

D(f2||g3||g2) + T2 < 0,

then for s5 > 0

sT2 +M1(s, f2, g3, g2) < 0, for s ∈ [0, s5],

if

D(f3||g1||g2)− T1 < 0,

then for some s6 > 0

−sT1 +M1(s, f3, g1, g2) < 0, for s ∈ [0, s6],

if

D(f3||g1||g3)− T1 < 0,

then for s7 > 0

−sT1 +M1(s, f3, g1, g3) < 0, for s ∈ [0, s7],

and at last if for s8 > 0

D(f3||g3||g2)− T2 < 0,

then it will be

−sT2 +M1(s, f3, g3, g2) < 0, for s ∈ [0, s8].

Denote s0 = min
i=1,8

si and consider

T+
1 = min[D(f1||g1||g2), D(f1||g1||g3)], (11)

T−1 = max[D(f2||g1||g2), D(f2||g1||g3),

D(f3||g1||g3), D(f3||g1||g2)], (12)

T+
2 = D(f2||g2||g3), (13)

T−2 = D(f3||g3||g2). (14)

We can conclude. Conditions s < s0 and T−1 < T+
1 ,

T−2 < T+
2 guarantee exponentional decreasing to 0 of

all terms in estimates (4)-(6) and then existence of the
necessary test (1)-(3).

Theorem 3: Conditions T−1 < T+
1 , T−2 < T+

2 are suf-
ficient for existence of test with exponentially decreasing
error probabilities and thresholds T1 between T−1 and T+

1

and T2 between T−2 and T+
2 .

4. TEST WITH CORRECT DISTRIBU-
TIONS

Here we can return to the normal situation with exact
distributions.

Let gk = fk, k = 1, 2, 3, instead (11)-(14) we obtain

T̂+
1 = min[D(f1||f2), D(f1||f3)],

T̂−1 = max[D(f2||f1||f3), D(f3||f1||f2)],

T̂+
2 = D(f2||f3),

T̂−2 = D(f3||f2).

As a consequence of Theorem 3 we obtain

Theorm 4: Conditions T̂−1 < T̂+
1 , T̂−2 < T̂+

2 are suffi-
cient for existence of test with exponentially decreasing
error probabilities and thresholds T̂1 between T̂−1 and T̂+

1

and T̂2 between T̂−2 and T̂+
2 .

This is an enlargement to the case of three hypotheses
of the result of Chernoff [3] for the binary case.

5. CONCLUSION AND COMMENTS
Ternary likelihood decision rule is presented and analyszed
when inaccurate version of the probability density func-
tions is used. Upper bounds of the error probabilities
are found.

For the case of independent and identically distributed
observations we have provided sufficient conditions of
existence of the required test.

Many problems are still open. It remains to find the nec-
essary condition for existence of the test. Next question
to study is the test for more than three hypotheses. It
is desirable to know if the notion of divergance of three
distributions is usefull in other situations, it is necessary
to investigate its inportant properties (see [9], [23]).
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