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ABSTRACT
The basic wiretap channel model is considered. The aim
is to maximize the rate of the reliable communication
from the source to the legitimate receiver, while keeping
the confidential information as secret as possible from
the wiretapper (eavesdroper). The E-capacity - equivo-
cation region, which is the generalization of the capacity
- equivocation region, is investigated. The outer bound
of this region is constructed.
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1. INTRODUCTION
Security is an important topic in communications. The
information theoretical security is an approach, that
demonstrates the possibility of transmitting confidential
messages without using an encryption key. The main
idea of the information theoretic security is to exploit
the inherent noises and difference between the channels
to a legitimate receiver and eavesdropper. In addition,
the transmitter intentionally adds randomness to pre-
vent eavesdroppers from accepting useful information
while guaranteeing the legitimate receiver to obtain the
information. Such an approach to guarantee secrecy has
the advantage of eliminating the key management issue,
resulting in lower complexity and savings in resources.
Such an approach was initiated by Wyner [1], who stud-
ied the most basic model called a wiretap channel. Later
Csiszár and Körner [2] studied the broadcast channel
with confidential messages, the special case of which
is the more general model of wiretap channel from [1],
when the channel to the eavesdropper is not necessar-
ily degraded as assumed in [1]. In this paper we con-
sider that general model of wiretap channel (see Fig. 1),
which is defined as follows.
The source wishes to transmit a message m to a le-
gitimate receiver while keeping it as secret as possi-
ble from an eavesdropper. The confidential message m
is assumed to be randomly and uniformly distributed
over a message set M. The encoder fN maps each
message m to a codeword x(m) = (x1, ..., xN ) ∈ XN ,
where X is the input alphabet and N is the transmis-
sion length. The codeword x(m) is transmitted over
a discrete memoryless channel (DMC) with transition
probability W (y, z|x). The noisy version y ∈ YN is
accepted by legitimate receiver and z ∈ ZN by eaves-

dropper, respectively. The decoder gN at the receiver
maps the received sequence y to an estimate m̂ of the
message.
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Fig. 1. Wiretap channel.

The capacity-equivocation region C of this model was
obtained in [2]. Other models with secrecy constraints
are surveyed in [3]. In this paper we investigate the E -
capacity - equivocation region C(E), which is the closure
of the set of all achievable rate - reliability - equivocation
pairs (R(E), Re), where the function R(E) presents op-
timal dependence of rate R from reliability (error prob-
ability exponent) E. It is the analogy of E - capacity
(rate -reliabilty function) suggested by E. Haroutunian
[4] and investigated for various channel models [5]. The
inner (random coding) bound of E - capacity - equiv-
ocation region in another setting was investigated in
[6]. Here the outer bound of this region is constructed.
When E tends to zero, this bound coincides with the
capacity-equivocation region obtained in [2].
The paper is organized as follows: In Section 2 the main
definitions and the problem statement are presented.
The formulation and the proof of the constructed bound
is given in Section 3. In Section 4 along with the con-
clusion ideas for future work are discussed.

2. PROBLEM STATEMENT
The DMC W (y, z|x) with finite input alphabet X , finite
output alphabets Y and Z is memoryless

WN (y, z|x) =

N∏
n=1

W (y, z|x)

Let us denote

W1(y|x) =
∑
z

W (y, z|x),

W2(z|x) =
∑
y

W (y, z|x),
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and

P1W1(y|u) =
∑
x

P1(x|u)W1(y|x). (1)

To formulate the problem consider auxiliary random
variables U and Q with values in finite U and Q, corre-
spondingly, that satisfy the Markov chain relationship:
Q→ U → X → (Y,Z).

Let the probability distributions (PD) of random vari-
able (RV) U be P0 = {P0(u), u ∈ U} and P1 = {P1(x|u),
x ∈ X , u ∈ U} be conditional PD of RV X for the
given value u. Joint PD of RV U,X we denote by
P0,1 = {P0,1(u, x) = P0(u)P1(x|u), u ∈ U , x ∈ X}. and
the marginal PD of X is P =

∑
u P0,1(u, x). We shall

use also the following PD

V = {V (y|x), x ∈ X , y ∈ Y},

P ◦ V = {P ◦ V (x, y) = P (x)V1(y|x), x ∈ X , y ∈ Y}

and

PV = {PV (y) =
∑
x

P (x)V (y|x), y ∈ Y}.

ForN length code the code rate is (log and exp functions
are taken to the base 2)

R =
1

N
log |MN |

and the average error probability is

eN =
1

|M|
∑

m∈M

WN
1 {YN − g−1(m)|x(m)},

where g−1(m) = {y : g(y) = m}.

The secrecy level of confidential message m at the wire-
tapper is measured by the equivocation rate defined as

RN
e =

1

N
H(M |ZN ),

where H(X|Y ) is the conditional entropy [7]. In other
words, the equivocation rate indicates the eavesdrop-
pers uncertainty about the message m given the channel
outputs ZN . Hence, the larger the equivocation rate,
the higher the level of secrecy.

A rate equivocation pair (R,Re) is achievable if there
exists a sequence of message sets MN with |MN | =
expNR and encoder decoder (fN , gN ) such that the
average error probability tends to zero as N goes to
infinity, and the equivocation rate Re satisfies

Re ≤ lim
N→∞

inf RN
e .

The rate equivocation pair (R,Re) indicates the confi-
dential rate R achieved at certain secrecy level Re.

The capacity - equivocation region C is defined to
be the closure of the set that consists of all achievable
rate equivocation pairs (R,Re).

In this paper we investigate the E - capacity - equiv-
ocation region C(E), which is defined in the similar
way with error probability satifying e ≤ exp{−NE}.

The following result was obtained in [2].

Theorem 1. The capacity - equivocation region of

wiretap channel is given by

C =
⋃

P0,1W


(R,Re),
R ≤ IP0,1,W1(U ;Y ),
0 ≤ Re ≤ R,
Re ≤ IP0,1,W1(U ;Y |Q)−
−IP0,1,W2(U ;Z|Q)

 (2)

where for generic random variables X and Y , I(X;Y )
denotes the mutual information between X and Y [7] .
The auxiliary random variables Q and U are bounded in
cardinality by |Q| ≤ |X|+ 3 and |U | ≤ |X|2 + 4|X|+ 3,
respectively.

In this paper the following theorem is proved.

Theorem 2. The outer bound of E - capacity - equiv-
ocation region of wiretap channel is given by

Rsp(E,W ) =

⋃
P0,1W


(R(E), Re) :
R(E) ≤
≤ minP1V :D(P1V ||P1W1|P0)≤E IP0,1,V (U ;Y );
0 ≤ Re ≤ R(E);
Re ≤ IP0,1,W1(U ;Y |Q)− IP0,1,W2(U ;Z|Q).


(3)

Here D(P1V ||P1W1|P0) denotes the divergence between
conditional distributions P1V and P1W1 given PD P0

[7]. The proof of Theorem 2 is given in the next section
using the method of types [8]. The set of all u ∈ UN of
the type P0 is denoted by T N

P0
(U) and T N

P (X|u) is the

set of all vectors x ∈ XN with conditional type P1(x|u)
given u ∈ T N

P0
(U).

3. PROOF OF THE RESULT
Let E and δ be given such that E > δ > 0. For given
N let us consider the codes (fN , gN ) with rate R error
probabilities of which exponentially decrease with the
given exponent E:

1

|MN |
∑

m∈MN

WN
1 {YN − g−1(m)|f(m)} ≤

≤ exp{−N(E − δ)},

which can be rewritten as∑
m:u,x(m)∈f(MN )

PN
1 (x|u)WN

1 {YN−g−1(m)|u,x(m))} ≤

≤ |MN | exp{−N(E − δ)}

Taking into account (1) we have∑
m:u(m)∈f(MN )

P1W
N
1 {YN − g−1(m)|u(m))} ≤

≤ |MN | exp{−N(E − δ)}.

For any P0 we can write∑
m:u(m)∈f(MN )∩TN

P0
(U)

P1W
N
1 {YN − g−1(m)|u(m)} ≤

≤ |MN | exp{−N(E − δ)}.
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The number of messages m can be presented as a sum
of numbers of codewords of different types

|MN | =
∑
P0

|f(MN ) ∩ TN
P0

(U)|;

and the number of all types P0 is not greater than (N+

1)|U|, then there exists a major type P ∗0 such, that

|MN | ≤ (N + 1)|U||f(MN ) ∩ TN
P∗
0

(U)|. (4)

Now we can write that for any type P1V (y|u)∑
m:u(m)∈f(MN )∩TN

P∗
0
(U)

P1W
N
1 {TN

P1,V (Y |u(m))−

−g−1(m)|u(m)} ≤ |MN | exp{−N(E − δ)}

For fixed types the conditional probability P1W
N
1 (y|u)

is constant [8]

P1W
N
1 (y|u) =

= exp{−N(HP∗
0,1V

(Y |U) +D(P1V ||P1W1|P ∗0 ))}

and we can write∑
m:u(m)∈f(MN )∩TN

P∗
0
(U)

{|TN
P1,V (Y |u(m))|−

−|TN
P1,V (Y |u(m)) ∩ g−1(m)|}P1W

N
1 (y|u)} ≤

≤ |MN | exp{−N(E − δ)}

or ∑
m:u(m)∈f(MN )∩TN

P∗
0
(U)

|TN
P1,V (Y |u(m))|−

− |MN | exp{−N(E − δ)}
exp{−N(HP∗

0,1,V
(Y |U) +D(P1V ||P1W1|P ∗0 ))} ≤

≤
∑
m

|TN
P1,V (Y |u(m)) ∩ g−1(m)|.

It follows from the definition of decoding function that
the sets g−1(m) are disjoint and, hence, the right part
of the last expression is not greater than |TN

P∗
0,1,V

(Y )|.
From the well known properties of types [8]

(N + 1)−|Y||U| exp{NHP∗
0,1

(Y |U)} ≤

|TN
P1,V (Y |u(m))| ≤ exp{NHP∗

0,1
(Y |U)}

we obtain

|f(MN ) ∩ TN
P∗
0

(U)|(N + 1)−|Y||U| exp{NHP∗
0,1

(Y |U)}−

−|MN | exp{N(HP∗
0,1,V

(Y |U) +D(P1V ||P1W1|P ∗0 )−

−E + δ)} ≤ exp{NHP∗
0,1,V

(Y )}.

Taking into account (4) we come at

|MN | ≤

exp{NIP∗
0,1,V

(U ;Y )}
(N + 1)−|U|(|Y|+1) − exp{D(P1V ||P1W1|P ∗0 )− E + δ)}

.

The right part of this inequality can be minimized by
the choice of conditional type P1V , keeping the denom-
inator positive, which takes place for large N when the
following inequality holds

D(P1V ||P1W1|P ∗0 ) ≤ E − δ.

We ommit the proof of equivocation rate, as it is the
same as in [3] page 384. Theorem 2 is proved.

Corollary. When E → 0 the outer bound of E -
capacity eequivocation region (3) coincides with capac-
ity - equivocation region (2) obtained in [2].

4. CONCLUSION AND FUTURE WORK
The E- capacity - equivocation region of the wiretap
channel is investigated, the outer bound of this region
is derived. When E → 0 this bound coincides with
capacity -equivocation region (2) obtained in [2].
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