
Option Pricing Simulation on GPGPU

Alexander, Bogdanov

Plekhanov Russian University of

Economics Stremyanny lane, 36,

Moscow, 117997, Russia,

St.-Petersburg State University,

Universitetskaya emb. 7/9, St.-

Petersburg, Russia

e-mail: bogdanov@csa.ru

Dmitry, Khmel

Plekhanov Russian University of

Economics Stremyanny lane, 36,

Moscow, 117997, Russia

e-mail: dima91x@gmail.com

Vladimir, Rukovchuk

Plekhanov Russian University of

Economics Stremyanny lane, 36,

Moscow, 117997, Russia

e-mail: vrukovchuk@gmail.com

Stanislav, Bogdanov

Plekhanov Russian University of

Economics Stremyanny lane, 36,

Moscow, 117997, Russia

e-mail: stan.bogdanov@gmail.com

ABSTRACT
The speed of computation is the key issue in trading. The

appearance of GPGPU opens new possibilities for substantial

increase in performance of pertinent algorithms. Although

porting of heavy applications on GPGPU is a difficult task,

we managed to effectively implement GPGPU both for

solution of Black - Scholes equation and direct simulation of

the process.

Keywords
Financial mathematics, GPGPU/ porting of applications,

Black - Scholes equation, direct simulation.

1. INTRODUCTION
In the world of finance, one of the main factors affecting

trading is time. Delaying information for a split second can

cost millions of dollars. Thus, it is obvious that with such a

time value, the speed of building a solution to the Black -

Scholes equation also plays a big role. Particular attention

should be paid to finding methods that are the least time

consuming. Moreover, it is obvious that the choice of the

method may depend on the values of the parameters of the

problem.

At the moment there are two main approaches to modeling the

behavior of options using the Black – Scholes equation: the

finite difference method and the approach using the path

integral.

2. APPROACHES TO MODELING THE

BLACK-SCHOLES EQUATION
Finite difference method. This method will be considered on

the example of an Asian option. The pricing problem of the

Asian option is widely discussed [1], [2], [3]. One of the

problems of the finite difference method for an Asian option

is the formulation of correct boundary conditions. Hagger [4],

[5], [6] cites detailed discussions on the derivation of the

physical boundary conditions for the Asian option in his

papers.

Functional integration. The method of functional integration

is one of the main ones in modern quantum physics. The

functional integral itself was first described by Richard

Feynman in 1942 [7]. To date, this approach is very popular

in financial mathematics. Numerical procedures were

developed to search for the price of exotic options, depending

on the price dynamics of the underlying asset [8], [9].

The Monte Carlo method [10], [11], [12], [13] is used to solve

the partial differential equation and calculate the functional

integral. However, despite the simplicity of implementation,

it has several disadvantages. The first is the poor convergence

of the method and, accordingly, the need to generate very long

chains of random numbers. As a result, in practical problems

a very careful approach is required when choosing a random

number sensor. Another significant disadvantage of this

method is the impossibility of an a priori estimate of accuracy.

3. APPLICATION OPTIMIZATION ON

HETEROGENEOUS SYSTEMS
Due to the constant increase in the diversity of accelerators,

development tools must, to one degree or another, ensure the

portability of applications between devices. This can manifest

itself in two forms: either an already compiled program is

launched on different platforms without recompiling, or the

program is compiled from one source code for different

platforms. The second method also includes compiling

platform-dependent fragments into dynamic libraries for

different platforms with the subsequent selection of the

appropriate fragment for a particular platform. Porting

without recompilation requires a unified intermediate

language, and porting with recompilation requires a unified

high-level API.

The most portable API is still OpenCL. Although the degree

of support varies for different platforms, and many platforms

still do not support OpenCL 2.0, it is difficult to find a

platform oriented at accelerating parallel data processing but

not supporting OpenCL at all. In the case of mobile platforms

(especially on Android), there are essentially no portable

OpenCL alternatives. Despite the good portability, OpenCL

has many disadvantages. For example, because of the

compilation at runtime, the device driver must contain an

almost complete C compiler, and the source code of the

kernels is open. The kernel works in its own context, even if

it runs on a host, which requires unnecessary copying of data

from the host into this context. Computing kernels have to be

written in a special language that is a subset of C. It creates

CSIT Conference 2019, Yerevan, Armenia, September 23-27

169

mailto:bogdanov@csa.ru
mailto:stan.bogdanov@gmail.com

potential vulnerabilities in data transfer between the host and

the device that are not detected by static analyzers. It also

means that compiler cannot perform context-sensitive

optimization. Apple even declared OpenCL deprecated in IoS

12 [3]. Many developers prefer to use NVIDIA CUDA.

CUDA is free of many of the drawbacks of OpenCL, in

particular, it supports the use of C ++ (including C ++ 17) in

the kernels and does not separate the kernel code from the host

code, which allows data transfer to be type safe. The question

of comparing the performance of CUDA and OpenCL kernels

remains open in general, but cuBLAS (linear algebra library

as part of 4 CUDA) outperforms both user-made

implementations on OpenCL and CUDA, which is also an

argument in favor of CUDA [4]. But the choice of CUDA over

time can lead to complications: the computing accelerators

ecosystem is evolving, new hardware solutions are emerging,

and switching to other platforms may become a necessity. For

large projects, this can be a really serious problem. An

interesting solution is offered by the ROCm project: it

contains a HIP – tool that allows you to semi-automatically

convert CUDA code into portable C++ code and compile this

portable C++ for AMD and NVIDIA, or you can write

initially portable applications. At the moment this tool is only

applicable for NVIDIA and AMD, although the idea can be

implemented for other platforms [5]. For projects designed for

long-term support, standardized APIs originally designed as

portable are more interesting. Such API can be provided by

the Parallelism project in the C++ standardization framework.

Its idea is that the interfaces provided by the standard C++

library for algorithms are already well suited for parallel

algorithms, an example of which is Boost.Compute and other

similar libraries. So, this interface can be extended for

automatic parallelization [6]. The CPU-oriented part of this

project is already included in the C++17 standard, and there is

a potential for expanding the approach to the GPUs and other

devices [7]. The main problem here is that the level of

abstraction is too high to allow you to manually optimize the

code for specific devices. Even the choice of the device is

actually inaccessible to the user, the compiler chooses it. But

thanks to this project, the C ++ memory model is now

expanding towards greater support for parallel algorithms,

including for accelerators. A beter compromise option is the

SYCL standard - a heterogeneous-oriented API for C ++,

released in 2014.

3.1 Ways to manage the process of

computing
The following approaches to managing the calculation

process have been implemented:

Simple Loop. A simple loop on a set of matrices, at each

iteration, a pair of source matrices is transmitted to the device,

processed on it, and the result is transmitted to the host. All

tasks are performed sequentially. Obviously, for small

matrices overhead must be greater than for large ones.

One-In One-Out. All source matrices are written to one large

buffer, the result is also written to one buffer, the

computational kernels are started asynchronously and can be

executed in parallel. Overhead costs should be less dependent

on the size of the matrices, but in practice the use of this

approach is rarely possible.

One-In Many-Out. The original matrices are also recorded

in one buffer, which is transferred to the accelerator once, but

the computational kernel is started and the data is transferred

to the host sequentially for each pair of initial matrices (the

kernels are executed sequentially). This allows the program to

perform calculations and transmit to the host the results of

previous calculations in parallel.

Auto Transfer Simple Loop. Similar to Simple Loop, but

instead of explicit data transfer, SYCL data automatic control

was used. In this case, only the total operation time is

measured, since SYCL does not measure data transfer times

separately with automatic control.

3.2 Ways to optimize computational kernels
Computational kernels are implemented for the operation of

matrix multiplication and matrix multiplication by a vector.

Simple Kernel. The classic loop used to multiply matrices by

the CPU. The only optimization is to change the traversal

order so as to streamline the memory access.

Local Memory Kernel. Classic block algorithm taken from

CUDA documentation. At each step, two fragments of the

original matrices are placed in the local memory of the

working group (shared memory in terms of CUDA), the

intermediate result is 8 calculated and also placed in the local

memory. In the case of multiplication by a vector, the local

memory is not needed for the left matrix. The block size was

calculated automatically based on accelerator characteristics.

Private Memory Kernel. It is similar to Local Memory

Kernel, but the intermediate result is placed directly into

private (register) memory.

4. FEATURES OF THE MODELING OF

THE BLACK-SCHOLES EQUATION ON

GPGPU
A full description of the model itself is given in our other

articles [14]. Here I would like to highlight the features of the

application of these approaches on hybrid systems.

The main problem of calculating an option through a

functional integral by the Monte Carlo method is that in order

to calculate the integral it is necessary to generate a set of

random numbers in such a way that the distribution density of

each of them depends on the previous one.

The distribution function of a random variable:

𝑓(𝑥) = 𝑒𝑥𝑝 {−
1

2𝜎2△𝑡
∑ [𝑥 − (𝑥𝑘−1 + 𝜇 △ 𝑡)]2𝑛+1

𝑘=1 } (1)

To eliminate the dependence on 𝑥𝑘−1 we note that

𝑥𝑛 = 𝜉𝑛𝜎√△ 𝑡 + (𝑟 −
𝜎2

2
) △ 𝑡 + 𝑥𝑛−1, 𝜉𝑛 ∈ 𝑁(0,1) (2)

This formula can be represented as:

𝑥𝑛 = 𝜎√△ 𝑡 ∑ 𝜉𝑖
𝑛
𝑖=1 + 𝑛 (𝑟 −

𝜎2

2
) △ 𝑡 + 𝑥0 (3)

Thus, if we use formula (3) to calculate an option on a GPU,

we can solve the problem with dependencies, and as a result

we get a typical problem for a GPU based on the

implementation of a large number of stochastic processes.

Having a large array with the resulting data for each process,

the problem arises of finding their sum. For this purpose, you

can use parallel reduction algorithms, which can also be

executed on the GPU several times faster than on the CPU. In

this case, knowing the hierarchy of memory and the

architecture of the graphics processor, you can speed up the

reduction algorithm several more times. So, as the main

170

limiting factor in performance is memory access. Efficiency

can be increased by using shared memory between threads

within a single block [15].

For all applications, an important factor for achieving high

performance on the GPU is the ability to bypass the

“bottleneck”, transferring large amounts of data to the

memory of the graphics device. Fortunately, for our task, only

random numbers are used as input, which can be generated

directly on the device using the CURAND library. It contains

optimized functions for generating pseudo- and quasi-random

numbers with a period of 267 [16].

Fig. 1. Comparison graph of sequential and parallel

algorithms for the calculation path integral using Monte Carlo

method.

The second option pricing approach using the explicit finite

difference method has also been implemented on the GPU.

For more details, see [17]. In order to perform calculations

with the maximum speed, constant time steps and spatial

variables were chosen. Experiments have shown that the

explicit method allows us to achieve sufficient accuracy.

𝐶𝑗𝑘
𝑛+1 = (1 − △ 𝜏𝜎2𝑗2 − 𝑟 △ 𝜏)𝐶𝑗𝑘

𝑛

+ (
△ 𝜏𝜎2𝑗2

2
+

𝑟𝑗 △ 𝜏

2
) 𝐶𝑗+1,𝑘

𝑛

+ (
△𝜏𝜎2𝑗2

2
−

𝑟𝑗△𝜏

2
) 𝐶𝑗−1,𝑘

𝑛 +
𝑗𝛥𝑆𝛥𝜏

2𝛥𝐼
𝐶𝑗,𝑘+1

𝑛 −
𝑗𝛥𝑆𝛥𝜏

2𝛥𝐼
𝐶𝑗,𝑘−1

𝑛 (4)

To implement this approach on the GPU, we will pay attention

to the following features of the problem under consideration

(4):

 the coefficients of the finite-difference scheme are

calculated independently of one another, and they do not

depend on time;

 the values 𝐶𝑗𝑘
𝑛+1 are independent within each time layer.

Since the coefficients of the finite-difference scheme do not

depend on time, it would be advisable to keep them in the

permanent memory of the graphics processor. In this case,

thanks to the caching mechanism, there is no need to

constantly read them from the global memory. Only in this

case it is necessary to determine the number of sampling

points that can fit in the internal memory of the device without

overflowing it.

This is the second feature of the graphics processor. The

values were calculated by blocks of 16 × 16. These changes

drastically reduce the number of accesses to global GPU

memory.

Fig. 2. Comparison graph of sequential and parallel

algorithms for finite difference method.

REFERENCES
[1] B. Alziary, J.-P. Decamps, P.-F. Koehl, "A P.D.E.

Approach to Asian Options: Analytical and Numerical

Evidence"

[2] E. Barucci, S. Polidoro, V. Vespri, "Some results on

partial differential equations and asian options"

[3] W. Henao, J. G. Lee, M. Moon, A. Narboni, N.

Petrosyan, "Numerical methods for pricing of asian

options"

[4] J. Hugger, "A fixed strike Asian option and comments

on its numerical solution"

[5] J. Hugger, "The boundary value formulation of the

Asian Call Option"

[6] J. Hugger, "Wellposedness of the boundary value

formulation of a fixed strike Asian option"

[7] R. P. Feynman, "The Principle of Least Action in

Quantum Mechanics, Ph.D" thesis, Princeton, May

1942.

[8] C. John, "Hull Options, Futures and other derivatives.

Seventh edition"

[9] P. Wilmott, J. Dewynne and S. Howinson, "Option

Pricing: Mathematical Models and Computation"

Oxford Financial Press, Oxford, 1993.

[10] Н. П. Бусленко, Д. И. Голенко, И. М. Соболь, В. Г.

Срагович, Ю. А. Шрейдер "Метод статистических

испытаний (метод Монте-Карло)" Физматгиз. 1962.

[11] В. Ф. Кузнецов, "Решение задач теплопроводности

методом Монте-Карло". М.:ОНТИ ИАЭ, 1973

[12] V. Linetsky, "The path integral approach to financial

modeling and options pricing"

[13] G. Montagna, O. Nicrosini, "Path Integral Way to

Option Pricing"

[14] A. Bogdanov, E. Stepanov, D. Khmel, "Assessment of

the dynamics of Asian and European options on the

hybrid system" J. Phys: Conf. Ser. 681(1), 012007

(2016)

[15] A. Boreskov, A. Harlamov, "Parallelnye vychysleniya

na GPU" Moscow University Press, Moscow (2012)

[16] CUDA Toolkit documentation (n. d.).

http://docs.nvidia.com/cuda/curand. Accessed 27 May

2019

[17] E. Stepanov, D. Khmel, V. Mareev, N. Storublevtcev,

and A. Bogdanov, "Porting the algorithm for calculating

an asian option to a new processing architecture" Vol.

10963 LNCS 2018, p. 113-122.

171

http://docs.nvidia.com/cuda/curand

	DT.pdf (p.85-107)
	DT_Title.pdf (p.1)
	New - Copy.pdf (p.2)
	50_190603_181912_DT_FinalSubmissionCSIT2019_FINAL.pdf (p.3-6)
	53_190607_110134_DT_CSIT_2019_Accurate_Pressure_Calculation_Method.pdf (p.7-10)
	81_190731_112131_DT_CSIT2019_p2_final.pdf (p.11-14)
	82_190731_130632_DT_CSIT2019_p1_final.pdf (p.15-18)
	DT_P_Title.pdf (p.19)
	New.pdf (p.20)
	03_190326_015335_DT_petrosyan1_FINAL.pdf (p.21-23)

	ITCT.pdf (p.142-150)
	ITCT_Title.pdf (p.1)
	New.pdf (p.2)
	73_190710_184356_ITCT_CSIT_Haroutunian_FINAL.pdf (p.3-6)
	69_190628_160849_ITCT_wiretap_csit_FINAL.pdf (p.7-9)

