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ABSTRACT 
The speed of computation is the key issue in trading. The 

appearance of GPGPU opens new possibilities for substantial 

increase in performance of pertinent algorithms. Although 

porting of heavy applications on GPGPU is a difficult task, 

we managed to effectively implement GPGPU both for 

solution of Black - Scholes equation and direct simulation of 

the process. 
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1. INTRODUCTION
In the world of finance, one of the main factors affecting 

trading is time. Delaying information for a split second can 

cost millions of dollars. Thus, it is obvious that with such a 

time value, the speed of building a solution to the Black - 

Scholes equation also plays a big role. Particular attention 

should be paid to finding methods that are the least time 

consuming. Moreover, it is obvious that the choice of the 

method may depend on the values of the parameters of the 

problem. 

At the moment there are two main approaches to modeling the 

behavior of options using the Black – Scholes equation: the 

finite difference method and the approach using the path 

integral. 

2. APPROACHES TO MODELING THE

BLACK-SCHOLES EQUATION
Finite difference method. This method will be considered on 

the example of an Asian option. The pricing problem of the 

Asian option is widely discussed [1], [2], [3]. One of the 

problems of the finite difference method for an Asian option 

is the formulation of correct boundary conditions. Hagger [4], 

[5], [6] cites detailed discussions on the derivation of the 

physical boundary conditions for the Asian option in his 

papers. 

Functional integration. The method of functional integration 

is one of the main ones in modern quantum physics. The 

functional integral itself was first described by Richard 

Feynman in 1942 [7]. To date, this approach is very popular 

in financial mathematics. Numerical procedures were 

developed to search for the price of exotic options, depending 

on the price dynamics of the underlying asset [8], [9]. 

The Monte Carlo method [10], [11], [12], [13] is used to solve 

the partial differential equation and calculate the functional 

integral. However, despite the simplicity of implementation, 

it has several disadvantages. The first is the poor convergence 

of the method and, accordingly, the need to generate very long 

chains of random numbers. As a result, in practical problems 

a very careful approach is required when choosing a random 

number sensor. Another significant disadvantage of this 

method is the impossibility of an a priori estimate of accuracy. 

3. APPLICATION OPTIMIZATION ON

HETEROGENEOUS SYSTEMS
Due to the constant increase in the diversity of accelerators, 

development tools must, to one degree or another, ensure the 

portability of applications between devices. This can manifest 

itself in two forms: either an already compiled program is 

launched on different platforms without recompiling, or the 

program is compiled from one source code for different 

platforms. The second method also includes compiling 

platform-dependent fragments into dynamic libraries for 

different platforms with the subsequent selection of the 

appropriate fragment for a particular platform. Porting 

without recompilation requires a unified intermediate 

language, and porting with recompilation requires a unified 

high-level API. 

The most portable API is still OpenCL. Although the degree 

of support varies for different platforms, and many platforms 

still do not support OpenCL 2.0, it is difficult to find a 

platform oriented at accelerating parallel data processing but 

not supporting OpenCL at all. In the case of mobile platforms 

(especially on Android), there are essentially no portable 

OpenCL alternatives. Despite the good portability, OpenCL 

has many disadvantages. For example, because of the 

compilation at runtime, the device driver must contain an 

almost complete C compiler, and the source code of the 

kernels is open. The kernel works in its own context, even if 

it runs on a host, which requires unnecessary copying of data 

from the host into this context. Computing kernels have to be 

written in a special language that is a subset of C. It creates 
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potential vulnerabilities in data transfer between the host and 

the device that are not detected by static analyzers. It also 

means that compiler cannot perform context-sensitive 

optimization. Apple even declared OpenCL deprecated in IoS 

12 [3]. Many developers prefer to use NVIDIA CUDA. 

CUDA is free of many of the drawbacks of OpenCL, in 

particular, it supports the use of C ++ (including C ++ 17) in 

the kernels and does not separate the kernel code from the host 

code, which allows data transfer to be type safe. The question 

of comparing the performance of CUDA and OpenCL kernels 

remains open in general, but cuBLAS (linear algebra library 

as part of 4 CUDA) outperforms both user-made 

implementations on OpenCL and CUDA, which is also an 

argument in favor of CUDA [4]. But the choice of CUDA over 

time can lead to complications: the computing accelerators 

ecosystem is evolving, new hardware solutions are emerging, 

and switching to other platforms may become a necessity. For 

large projects, this can be a really serious problem. An 

interesting solution is offered by the ROCm project: it 

contains a HIP – tool that allows you to semi-automatically 

convert CUDA code into portable C++ code and compile this 

portable C++ for AMD and NVIDIA, or you can write 

initially portable applications. At the moment this tool is only 

applicable for NVIDIA and AMD, although the idea can be 

implemented for other platforms [5]. For projects designed for 

long-term support, standardized APIs originally designed as 

portable are more interesting. Such API can be provided by 

the Parallelism project in the C++ standardization framework. 

Its idea is that the interfaces provided by the standard C++ 

library for algorithms are already well suited for parallel 

algorithms, an example of which is Boost.Compute and other 

similar libraries. So, this interface can be extended for 

automatic parallelization [6]. The CPU-oriented part of this 

project is already included in the C++17 standard, and there is 

a potential for expanding the approach to the GPUs and other 

devices [7]. The main problem here is that the level of 

abstraction is too high to allow you to manually optimize the 

code for specific devices. Even the choice of the device is 

actually inaccessible to the user, the compiler chooses it. But 

thanks to this project, the C ++ memory model is now 

expanding towards greater support for parallel algorithms, 

including for accelerators. A beter compromise option is the 

SYCL standard - a heterogeneous-oriented API for C ++, 

released in 2014. 

3.1 Ways to manage the process of 

computing 
The following approaches to managing the calculation 

process have been implemented:  

Simple Loop. A simple loop on a set of matrices, at each 

iteration, a pair of source matrices is transmitted to the device, 

processed on it, and the result is transmitted to the host. All 

tasks are performed sequentially. Obviously, for small 

matrices overhead must be greater than for large ones.  

One-In One-Out. All source matrices are written to one large 

buffer, the result is also written to one buffer, the 

computational kernels are started asynchronously and can be 

executed in parallel. Overhead costs should be less dependent 

on the size of the matrices, but in practice the use of this 

approach is rarely possible.  

One-In Many-Out. The original matrices are also recorded 

in one buffer, which is transferred to the accelerator once, but 

the computational kernel is started and the data is transferred 

to the host sequentially for each pair of initial matrices (the 

kernels are executed sequentially). This allows the program to 

perform calculations and transmit to the host the results of 

previous calculations in parallel.  

Auto Transfer Simple Loop. Similar to Simple Loop, but 

instead of explicit data transfer, SYCL data automatic control 

was used. In this case, only the total operation time is 

measured, since SYCL does not measure data transfer times 

separately with automatic control.  

3.2 Ways to optimize computational kernels 
Computational kernels are implemented for the operation of 

matrix multiplication and matrix multiplication by a vector.  

Simple Kernel. The classic loop used to multiply matrices by 

the CPU. The only optimization is to change the traversal 

order so as to streamline the memory access.  

Local Memory Kernel. Classic block algorithm taken from 

CUDA documentation. At each step, two fragments of the 

original matrices are placed in the local memory of the 

working group (shared memory in terms of CUDA), the 

intermediate result is 8 calculated and also placed in the local 

memory. In the case of multiplication by a vector, the local 

memory is not needed for the left matrix. The block size was 

calculated automatically based on accelerator characteristics. 

Private Memory Kernel. It is similar to Local Memory 

Kernel, but the intermediate result is placed directly into 

private (register) memory. 

4. FEATURES OF THE MODELING OF

THE BLACK-SCHOLES EQUATION ON

GPGPU
A full description of the model itself is given in our other 

articles [14]. Here I would like to highlight the features of the 

application of these approaches on hybrid systems. 

The main problem of calculating an option through a 

functional integral by the Monte Carlo method is that in order 

to calculate the integral it is necessary to generate a set of 

random numbers in such a way that the distribution density of 

each of them depends on the previous one. 

The distribution function of a random variable: 

𝑓(𝑥)  =  𝑒𝑥𝑝 {−
1

2𝜎2△𝑡
∑ [𝑥 −  (𝑥𝑘−1 + 𝜇 △ 𝑡)]2𝑛+1

𝑘=1 }  (1) 

To eliminate the dependence on 𝑥𝑘−1 we note that

𝑥𝑛 = 𝜉𝑛𝜎√△ 𝑡 + (𝑟 −
𝜎2

2
) △ 𝑡 + 𝑥𝑛−1, 𝜉𝑛 ∈ 𝑁(0,1)   (2) 

This formula can be represented as: 

𝑥𝑛 = 𝜎√△ 𝑡 ∑ 𝜉𝑖
𝑛
𝑖=1 +  𝑛 (𝑟 −

𝜎2

2
) △ 𝑡 + 𝑥0 (3)

Thus, if we use formula (3) to calculate an option on a GPU, 

we can solve the problem with dependencies, and as a result 

we get a typical problem for a GPU based on the 

implementation of a large number of stochastic processes. 

Having a large array with the resulting data for each process, 

the problem arises of finding their sum. For this purpose, you 

can use parallel reduction algorithms, which can also be 

executed on the GPU several times faster than on the CPU. In 

this case, knowing the hierarchy of memory and the 

architecture of the graphics processor, you can speed up the 

reduction algorithm several more times. So, as the main 
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limiting factor in performance is memory access. Efficiency 

can be increased by using shared memory between threads 

within a single block [15]. 

For all applications, an important factor for achieving high 

performance on the GPU is the ability to bypass the 

“bottleneck”, transferring large amounts of data to the 

memory of the graphics device. Fortunately, for our task, only 

random numbers are used as input, which can be generated 

directly on the device using the CURAND library. It contains 

optimized functions for generating pseudo- and quasi-random 

numbers with a period of 267 [16]. 

Fig. 1. Comparison graph of sequential and parallel 

algorithms for the calculation path integral using Monte Carlo 

method. 

The second option pricing approach using the explicit finite 

difference method has also been implemented on the GPU. 

For more details, see [17]. In order to perform calculations 

with the maximum speed, constant time steps and spatial 

variables were chosen. Experiments have shown that the 

explicit method allows us to achieve sufficient accuracy. 

𝐶𝑗𝑘
𝑛+1 = (1 − △ 𝜏𝜎2𝑗2 − 𝑟 △ 𝜏)𝐶𝑗𝑘

𝑛

+ (
△ 𝜏𝜎2𝑗2

2
+

𝑟𝑗 △ 𝜏

2
) 𝐶𝑗+1,𝑘

𝑛  

+ (
△𝜏𝜎2𝑗2

2
−

𝑟𝑗△𝜏

2
) 𝐶𝑗−1,𝑘

𝑛 +
𝑗𝛥𝑆𝛥𝜏

2𝛥𝐼
𝐶𝑗,𝑘+1

𝑛 −
𝑗𝛥𝑆𝛥𝜏

2𝛥𝐼
𝐶𝑗,𝑘−1

𝑛  (4)

To implement this approach on the GPU, we will pay attention 

to the following features of the problem under consideration 

(4): 

 the coefficients of the finite-difference scheme are

calculated independently of one another, and they do not

depend on time;

 the values 𝐶𝑗𝑘
𝑛+1 are independent within each time layer. 

Since the coefficients of the finite-difference scheme do not 

depend on time, it would be advisable to keep them in the 

permanent memory of the graphics processor. In this case, 

thanks to the caching mechanism, there is no need to 

constantly read them from the global memory. Only in this 

case it is necessary to determine the number of sampling 

points that can fit in the internal memory of the device without 

overflowing it. 

This is the second feature of the graphics processor. The 

values were calculated by blocks of 16 × 16. These changes 

drastically reduce the number of accesses to global GPU 

memory. 

Fig. 2. Comparison graph of sequential and parallel 

algorithms for finite difference method. 
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