
ABSTRACT
The report is devoted to the concept of creating block-
recursive matrix algorithms for computing on a super-
computer with distributed memory and dynamic decen-
tralized control.
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1. INTRODUCTION
Appearance of the supercomputer system with hundreds
of thousands of cores poses many new problems for spe-
cialists in the field of parallel computing. The three
main ones are uniform load of equipment, the presence
of control over the growth of the error of numbers dur-
ing calculations and the presence of protection against
possible physical failures of individual processors.

In the paper [1], the authors presented a new task in-
sertion extension for PaRSEC, Dynamic Task Discovery
(DTD), supporting shared and distributed memory en-
vironments. They compare two programming paradigms:
Parameterized Task Graph (PTG) and Dynamic Task
Discovery (DTD). The result shows good scalability and
comparable result to PTG in most cases and, where
comparable benchmarks exist, consistently better per-
formance compared to other runtime.

We suggest using another dynamic control scheme for a
parallel computing process, which is much simpler than
DTD and does not allow to control the parallel execu-
tion of an arbitrary algorithm. It can be used only for
block-recursive algorithms. In such algorithms, inde-
pendent separate subtasks operations apply to blocks,
so it is easy to organize decentralized control of the en-
tire computational process.

The second problem is the accumulation of errors during
calculations. The larger the matrix size, the more error
can accumulate.

Let a set of matrices be given and it is required to cal-
culate some new matrices, vectors or scalars. All source
numbers are rational numbers due to the fact that the
memory has a finite size. If your algorithm uses only
rational operations, then you have the opportunity to
get an exact answer with respect to the input data.

If the approximate calculations are used, then the cal-
culations error increases with the number of operations.
Consequently, with the growth of matrix sizes, there
comes a moment when the error exceeds the allowed
limits. For example, in the Gauss algorithm, errors can
exceed the exact solution already for matrices of order
10 if these matrices are ill-conditioned. Unfortunately,
for every well-conditioned matrix, this boundary also
has a well-defined value. And what should be done if
the size of the matrix exceeds this limit value?

Then you have to change the computational paradigm.
For example, you can exchange accuracy for time, but
you have many different possibilities to do this.

The question is, what should be the new computational
paradigm? It may vary depending on the type of algo-
rithm. Let’s consider these types.

2. THREE CLASSES OF MATRIX AL-
GORITHMS

All matrix algorithms are divided into three separate
classes: (MA1) the rational direct matrix algorithms,
(MA2) the irrational direct matrix algorithms, (MA3)
the iterative matrix algorithms.

The first class (MA1) contains algorithms that use only
four arithmetic operations. As a result, only rational
functions can be computed. This class includes an algo-
rithm for solving systems of linear equations, calculat-
ing the inverse matrix, a determinant, a similar three-
diagonal matrix, a characteristic polynomial, a general-
ized inverse matrix, a kernel of a linear operator, LU,
LEU and LDU decompositions, Bruhat decomposition
and so on.

The second (MA2) class consists of all direct methods
that did not fall into the first class. Elements of ma-
trices that are obtained as a result of the application
of these methods cannot be obtained in the form of
rational functions. This class includes algorithms for
QR-decomposition of matrices, calculations of a similar
two-diagonal matrix, and others.

The third class (MA3) consists of all remaining algo-
rithms, in which iterative methods are used. For exam-
ple, algorithms for calculating eigenvalues and eigenvec-
tors of a matrix and algorithms for SVD decomposition
fall into this class when the rank of the matrix is greater
than four.

Here you can see a complete analogy with algorithms
for solving algebraic equations. Algorithms for solving
algebraic equations can be divided into the same three
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classes. The first class contains algorithms for solving
linear equations. The second class consists of direct al-
gorithms for solving equations of the second, third and
fourth degrees. And the third class consists of iterative
algorithms for solving algebraic equations. Such algo-
rithms allow finding solutions to equations of degree five
and higher.

Each of these classes uses its own special matrix al-
gorithms. Accordingly, each of these classes requires
its own methods of creating matrix algorithms for large
matrices and for supercomputers with distributed mem-
ory.

3. MA1-ALGORITHMS
We will assume that all matrices are square and have 2k

rows and columns. If the matrix has other sizes, then it
can be added to such a square matrix with zero or unit
blocks.

3.1 Recursive standard and Strassen’s ma-
trix multiplication

Recursive algorithm for standard matrix multiplication
is based on the equations(
A0 A1

A2 A3

)
×
(
B0 B1

B2 B3

)
+

(
C0 C1

C2 C3

)
=

(
D0 D1

D2 D3

)
D0 = A0B0+A1B2+C0, D1 = A0B1+A1B3+C1, D2 =
A2B0 +A3B2 + C2, D3 = A2B1 +A3B3 + C3. Number
of operations for this algorithm is ∼ n3.

The Strassen multiplication algorithm [?] is also a block
recursive algorithm. The number of operations for this
algorithm is ∼ nlog2 7. There exists a boundary with
respect to the density of the matrix, which separates
the region of applicability of the Strassen multiplication.
(see details in [?]).

3.2 Recursive inversion of triangular ma-
trix

If A =

(
A 0
B C

)
is invertible triangular matrix of order

2k and det(A) 6= 0 then

A−1 =

(
A−1 0

−C−1BA−1 C−1

)
.

3.3 Recursive Cholesky decomposition
Let A =

(
A1 A2

AT2 A3

)
be a positive definite symmetric

matrix and H =

(
B 0
C D

)
be a low triangle matrix

with the property A = HHT . The mapping

Chol(A) = (H,H−1)

is called an Cholesky decomposition. It is easy to see
that the recursive algorithm of Cholesky decomposition
has the following form. Let Chol(A1) = (B,B−1). Then
we can compute

C = AT2 (B−1) and F = A3 − CCT

Let Chol(F ) = (D,D−1). Then H =

(
B 0
C D

)
and

H−1 =

(
B−1 0

−D−1CB−1 D−1

)
.

3.4 Recursive Strassen’s matrix inversion
If A =

(
A0 A1

A2 A3

)
, det(A) 6= 0 and det(A0) 6= 0 then

the inverse matrix can be calculated as follows:

A−1 =

(
I −A−1

0 A1

0 I

)(
I 0
0 (A3 −A2A

−1
0 A1)−1

)

×
(

I 0
−A2 I

)(
A−1

0 0
0 I

)
=

(
M6 M1M4

M5 M4

)
(seein[?]).

We have denoted here M0 = −A−1
0 , M1 = M0A1, M2 =

A2M0,M3 = M2A1,M4 = (A3+M3)−1,M5 = −M4M2,
M6 = M1M5 −M0.

3.5 Other recursive matrix algorithms of
MA1-class

You can find many other recursive matrix algorithms
of this class in the papers [?]-[?]. These are such al-
gorithms as computation of the adjoint matrix, kernel
and matrix determinant, computation of the general-
ized Bruhat decomposition in fields and in commuta-
tive domains, LEU and LDU triangular decomposition
of matrices. New applications of these algorithms were
preposed in [?] and [?].

As we can see, many block recursive algorithms are al-
ready known in the class MA1. However, in the next
class MA2, we know only one such algorithm. This
is Schonhage algorithm for the QR-decomposition of a
matrix [?].

In the next section, we propose another way of present-
ing the algorithm [?] and we calculate the exact number
of operations.

4. MA2-CLASS: QR DECOMPOSITION
Let A be a matrix over a field. It is required to find the
upper triangular matrix R and the orthogonal Q matrix
such that A = QR. For definiteness, we will consider
an algorithm applied to a square matrix A over a field
of real numbers.

Consider the case of a 2×2 matrix. The desired decom-
position A = QR has the form:(

α β
γ δ

)
=

(
c −s
s c

)(
a b
0 d

)
,

where the numbers s and c satisfy the equation s2+c2 =
1. If γ = 0 then we can set c = 1, s = 0. If γ 6= 0, then
we get ∆ = α2 + γ2 > 0, c = α/

√
∆, s = γ/

√
∆. We

denote such a matrix Q by gα,γ .

Let the matrix A be given, its elements (i, j) and (i +
1, j) be α and γ, and all the elements to the left of them
be zero: ∀(s < j) : (ai,s = 0) & (ai+1,s = 0).

Let Gi,j = diag(Ii−1, gα,γ , In−i−1). These matrices are
called Givens matrices. Then the matrix Gi,jA differs
from A only in two rows i and i + 1, but all the ele-
ments to the left of the column j remain zero, and in
the column j in i+ 1 line will be 0.

This property of the Givens matrix allows us to formu-
late such an algorithm

(1). First we reset the elements under the diagonal in
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the left column:

A1 = G1,1G2,1...Gn−2,1Gn−1,1A

(2). Then we reset the elements that are under the
diagonal in the second column:

A2 = G2,2G3,2...Gn−2,2Gn−1,2A1

(k). Denote G(k) = Gk,kGk−1,k...Gn−2,kGn−1,k, k =
1, 2, .., n − 1. Then, to calculate the elements of the k
th column, we need to obtain the product of matrices

Ak = G(k)Ak−1.

(n-1). At the end of the calculation, the element in
the n− 1 column will be reset: An−1 = G(n−1)An−2 =
Gn−1,n−1An−2.

4.1 QRG decomposition
Let a matrix M of size 2n × 2n be divided into four

equal blocks: M =

(
A B
C D

)
. There are three stages

in this algorithm.

(1). The first stage is the QRG decomposition of the
block C:

C = Q1C1, M1 = diag(I,Q1)M =

(
A B
C1 D1

)
.

(2). The second stage is the cancellation of a paral-
lelogram composed of two triangular blocks: the lower
triangular part AL of the block A and the upper tri-
angular part CU1 of the block C1. Denote the upper
triangular matrix A1 and annihilating matrix Q2:

Q2

(
A
C1

)
=

(
A1

0

)
, M2 = Q2M1 =

(
A1 B1

0 D2

)
.

(3). The third stage is the QRG decomposition of the
D2 block: D2 = Q3D3.

R = diag(I,Q3)M2 =

(
A1 B1

0 D3

)
.

As a result, we get:

M = QTR, Q = diag(I,Q3)Q2 diag(I,Q1).

Since the first and third stages are recursive calls of
the QRG procedures, it remains to describe the par-
allelogram cancellation procedure. Let’s call it a QP
decomposition.

4.2 QP-decomposition
Let the matrix M =

(
A
BU

)
have dimensions 2n × n

and, at the same time, the lower unit BU of size n×n has
an upper triangular shape - all elements under its main
diagonal are zero. We are looking for the factorization of

the matrix M = QP = Q

(
AU

0

)
, with the orthogonal

matrix Q.

It is required to annul all elements between the up-
per and lower diagonals of the M matrix, including the
lower diagonal. It is easy to see that this can be done
with Givens matrices. We will consistently perform

columns invalidation by traversing column elements from
bottom to top and traversing columns from left to right.

But we are interested in the block procedure. Since n
is even, we can break the parallelogram formed by the
diagonals into 4 parts using its two middle lines. We get
4 equal parallelograms. To cancel each of them, we will
simply call the parallelogram cancellation procedure 4
times. We will perform the calculations in this order:
the bottom left (Pld), then we simultaneously cancel the
top left (Plu) and the bottom right (Prd), and the last
we will cancel the top right (Pru). The corresponding
orthogonal Givens matrices of size n × n are denoted
Qld. Qlu. Qrd and Qru. Let

Q̄ld = diag(In/2, Qld, In/2), Q̄ru = diag(In/2, Qru, In/2),

As a result, we get:

Q = Q̄ru diag(Qlu, Qrd)Q̄ld

The number of multiplications of matrix blocks of size
n/2× n/2 is 24. Hence the total number of operations:
Cp(2n) = 4Cp(n)+24M(n/2).. Suppose that for multi-
plication of two matrices of size n×n you need γnβ oper-
ations and n = 2k, then we get: Cp(2k+1) = 4Cp(2k) +

24M(2k−1) = 4kCp(21) +24γ
∑k−1
i=0 4k−i−12iβ =

24γ(n2/4) 2k(β−2)−1

2(β−2)−1
+ 6n2 = 6γ n

β−n2

2β−4
+ 6n2

Cp(n) =
6γnβ

2β(2β − 4)
+

3n2

2
(1− γ

2β − 4
)

4.3 The complexity of QRG decomposition
algorithm

Let us estimate the number of operations C(n) in this
block-recursive decomposition algorithm, assuming that
the complexity of the matrix multiplication is M(n) =
γnβ , the complexity of canceling the parallelogram is
Cp(n) = αβ , where α, β, γ are constants, α = 6γ

2β(2β−4)

and n = 2k: C(n) = 2C(n/2) + Cp(n) + 6M(n/2) =
2C(2k−1) +Cp(2k) + 6M(2k−1) =

=
γ6(2β − 3)(nβ − 2n

2β
)

(2β − 4)(2β − 2)

5. DYNAMIC ALGORITHMS
Dynamic matrix algorithms are based on matrix block-
recursive algorithms. In such algorithms, the matrix is
recursively divided into blocks. A block-recursive algo-
rithm is again applied to each of the blocks. This hap-
pens as long as the blocks remain large enough. When
the block size becomes small enough, the usual sequen-
tial algorithms are applied to the blocks. This limit
for the size of a small block depends on the physical
characteristics of the computing device and should be
automatically adjusted to the specific equipment.

5.1 The dynamic algorithm has three stages
First stage. This is the initial construction of the con-
nections tree for computational nodes. The large blocks
are sent from the root node to a child along with lists
of free nodes. From these child nodes, data is sent fur-
ther, but already with smaller blocks and corresponding
parts of the list of free nodes.

Second stage. It occurs when either all the free nodes
have received their subtasks, or when the size of the
blocks has decreased to a certain boundary, which is
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predetermined. The tree of connections is constructed
and the calculation takes place on leaf vertices.

The third stage. At this stage, the results are returned
from leaf vertices to the root vertex. The result of the
main task is obtained at root vertex and the calculations
are completed.

5.2 Automatic redistribution of subtasks
Dynamic control involves the automatic redistribution
of subtasks from overloaded nodes to free nodes. For
this purpose, a scheme is provided for transmitting in-
formation about free nodes and information about over-
loaded nodes. Both streams of information are trans-
mitted along the tree towards the root vertex until they
meet at a certain node. After this, the information
about free vertices is redirected to the overloaded ver-
tices.

The largest subtasks from the overloaded nodes are trans-
mitted to the free nodes. And after completing the cal-
culations, the result is returned to the node from which
this subtask was obtained.

5.3 Protection scheme in case of a failure
of a node

It also uses a very simple protection scheme in case of
a failure of a node during calculations.

Let node 1 send a subtask S to node 2. Let node 2 fail
and the failure message cames to node 1. Node 1 will
mark this subtask S as unsolved and return it to the
list of unsolved subtasks. All operations of transferring
results from child nodes to node 2 are simply canceled.
No other action is required. The computational process
will continue on all other nodes without any changes.

This scheme was implemented in the Java program-
ming language using the OpenMPI and MathPartner
[?] packages, and its work was tested on the matrix
multiplication and matrix inversion algorithms. A more
detailed description of this scheme is presented in [?].

6. CONCLUSION
We proposed a new classification of matrix computa-
tional algorithms, which decomposes all algorithms into
three classes: rational, irrational and iterative. We dis-
cribed the new computational paradigm: using of the
block-recursive matrix algorithms for creating parallel
programs that are designed for supercomputers with
distributed memory and dynamic decentralized control
of the computational process. We have shown many
examples of such algorithms. We proposed a dynamic
decentralized computation control scheme.
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