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ABSTRACT

The queue state in multiprocessor computing systems
is an actual problem for their use in the process of tasks
scheduling. In this paper, a system of differential equa-
tions is obtained describing the probabilities of the sys-
tem state at time ¢, which can be solved using numerical
methods. However, the probabilities sought-for the sys-
tem M|M|m|n with a constraint on the residence time
can be obtained in terms of the Laplace-Stieltjes trans-
form.
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1. INTRODUCTION

In classical queueing theory it is usually assumed that
tasks that cannot get service immediately after arrival
either join the queue (and then are served according to
some queueing discipline) or leave the system forever.
Sometimes tasks arriving for execution may be ”impa-
tient”, that is, they leave the queue after a certain wait-
ing time [1,2].

This paper addresses the problem of obtaining the state
probabilities of the system M|M|m|n for the exponen-
tial distribution of the arrival, execution, and service
failure tasks when each task has a waiting time restric-
tion.

2. SYSTEM DESCRIPTION

Suppose that a task stream enters a computing system
consisting of m processors (m > 1). Each task is char-
acterized by three random parameters (v, 8,w), where
v is the number of computational resources(processors,
cores, cluster nodes, etc.,) required to perform the task,
(8 is the maximum time required to complete the task
and w is the possible time that the task can wait before
assigning to run, after which it leaves the system with-
out service [3].

By using David Kendall’s notation(which is widely used
to describe elementary queueing systems), the system
under consideration can be represented as M|M|m|n.
So, the system parameters are described:

m - the maximum number of computational resources;
n - the maximum permissible number of tasks in the
queue;

« - a random value of the time interval between neigh-
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boring entrances, which has the probability distribution:
Pla<t)=1-e

where a is the intensity of the incoming stream;
B - a random value of the task execution time, which
has the probability distribution:

PB<t)y=1—e",

where b is the intensity of service;

w - a random value of the permissible waiting time for
a task in the queue, which has the probability distribu-
tion:

Pw<t)=1—e"",

where w is the intensity of the failure of service for a
task from the queue;

v - a random value of the number of required compu-
tational resources for performing a task, which has the
probability distribution:

Plv<k)= E,k =12,..,m.
m

Tasks will be accepted for service in the order of their
entry into the system, i.e., FIFO discipline is used (First-
In-First-Out). Those tasks that arrive at the time of full
occupation of the queue (there are already n tasks in the

queue) receive a denial of service.

3. BASIC NOTATIONS
AND EQUATIONS

To analyze our system we need to identify the following
basic notation:

L; ; - the state of the system when ¢ tasks are serviced
and j tasks are waiting in the queue,

P, ;(t) - the probability that the system is in the L; ;
state at the moment of time ¢.

Due to finite numbers n and m, the number of possible
states of the system is finite.

It is known, that the total flow from several elementary
flows is also elementary, and the probability that more
than one event can occur during a short h time is o(h).
Considering this fact, let’s list all possible cases related
to states of the system at the moment of time ¢, when
during the h time the system goes into the state L; ;:

1. at the moment of time ¢, the state of the system
was L;; and over the next h time there was no
change in the system;

2. at the moment of time ¢, the state of the system
was L; j—1 and over the next h time one task ar-
rived and joined the queue;



3. at the moment of time ¢, the state of the system
was Li_ky1,j+k, where k = 1,2, ...,min(i,n — j)
and over the next h time one task completed the
service and left the system, the first k£ tasks from
the queue were accepted to service;

4. (a) at the moment of time ¢, the state of the sys-
tem was L; j+1 and over the next h time one
task from the queue, not the first task, left
the queue(one’s waiting time ran out);

at the moment of time ¢, the state of the sys-
tem was L;_ jtk+1, where k =0,1,...,¢ — 1
and over the next h time the first task of the
queue left the queue(its waiting time ran out)
and the first k£ tasks from the queue were ac-
cepted to service.

Obviously, the probability that the state of the system
at the moment of time ¢ + h will be L; ; is the sum of
the probabilities of the above cases, it follows that

Pyj(t+h) = qf; (t,h)+
+9]qf22( h)+ )
+ 5007 (8, h)+
+ 15003 (8, h) + o(h),
where 0 < <m,0< 5 <n,
0, forj=n
nj = . b
1, for0<j<n
0, forj=0
0; = L
1, for0<j<n
and q(l)(t h), qﬁ)(t,h) ql(s;) (t,h), ql(?(t,h) are proba-

bilities for appropriate cases:

1)

4q; ; Pi»j (t)67<ib+jw+a)h

(ta h) =

’

(2)

q;; (t:h) = ahP; iy (t)e” HUTDwrOR,
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d@ ) =3 (51.,,@(1' — k4 )bRP i1 k()%
k=0

«P(i, ], k)e—((i—k+1)b+(j+k)w+a)h)’

where l1 = min(i,n — j),

0
6i = ’
ok {1’

and if i =0 and 0 < j < n, then P(i,,j,k) = 0 and if
i=0and j = 0, then P(i,,j,k) = 1 but for otherwise
P(i,j, k) is the following conditional probability:

fori=mand k=0

. b
for otherwise

i+1
P(Z 3,k (Zl/s+ Z z/s<m<§:1/S
s=i—k+2
i+2 i—k+1 i—k+2
+ Z Zl/s<m<zvs>,
s=i—k+2 s=1 s=1

here it is assumed that v;_x4+1 is the number of re-
quired computational resources required to service the
task that has left the system(it was serviced over the h
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time),

QZ N (t h) = ]w}LPZ J+1( )ei(ib+(j+1)w+a)h+

1y - ‘ |
+ Z (thi_k’]-Jr,,c_~_1(15)?(2'7 k)e*((Z*k)b+(3+k+l)w+a)h)’
k=0

where > = min(i,z— 7), f(z,kz) = 0if ¢ = 0, but if
0 < i < m, then P(i,k) is the following conditional
probability:

fzk <

i+1

Zub—i— Z y6<m<2ub

s=i—k+2

i+2 i—k+1
-+ Z Zys <m< Z Z/S>,
s=i—k+2

here it is assumed that v;_x4+1 is the number of re-
quired computational resources required to service the
task that has left the queue(its waiting time ran out
over the h time).

To calculate P(i,j,k), P(i,k) and some other useful
probabilities, we present the formulas in the next sec-
tion of this article.

Noteif it =0forall0 <j<n

Po;(t) =0, (2)

and

®3)

4. LEMMAS AND FORMULAS FOR
SOME USEFUL PROBABILITIES

This section presents some useful lemmas and the calcu-
lation of the values of some probabilistic characteristics.
By P(i,k) is denoted the probability that k processors
will be occupied by @ tasks:

_p@ly,._k).

Lemma 4.1. The probability that k processors will be
occupied by i tasks, can be obtained in the following way:

1v<k_1>,1§i§k§m.
mt\71—1

Proof. To prove the lemma we use the mathematical
induction technique. The method of induction requires
two cases to be proved. The first case, called the base
case, proves that the property holds for ¢ = 1:

Lfk-1y_ 1
m 0 T m’

The statement is true because if i = 1, then

P(i k) =

P(1,k) =

P(1,k) =

The second case, called the induction step, proves that
if the property holds for number ¢ — 1, then it holds for



the next natural number :

k—1
Pik)= 32 PU=1)PLk=]) =
IR = A
_E]; mi=1 (i—2> B )
k -1
- J=ZZ'—1<Z_2>

From Combinatorics we know this equality:

e (e (1)) o

Considering the equality (5) to count (4), we get the
formula, which was mentioned in Lemma 2.1.:

1 (k-1
mi\i—1/

Lemma 4.2. The probability that i tasks will occupy no
more than k processors, can be obtained in the following

(Zu]<k> <>1<z<k<m

Proof. To prove the lemma we use the formula, which

we got in Lemma 2.1.
: . i—1
P v, <k sz . =

<z-i>

To calculate the last sum, we again use the equality (5)
and as a result we get that
1 [k
mi\i)

(gr)-
(Z% <s<1§m> - (m_

Lemma 4.3.
where 1 < k < s<m.

P(i, k) =

Proof. It’s obvious that:

k41
<Zl/1 <s< Zw)
— P(Zyi:j)P(Vk+1>5j)~

Primarily, we use the obvious fact that

. m—s+j
P(Vk+1>S—J):TJ7

and then we use the formula, which we got in Lemma

183

2.1. for the first probability in sum, as a result we get:

k+1
(ZW§S<Z%> =
1 S 71 S ) 71
e Z(ms>(i_1)+gf(i_1>

i=k

o))

1
T opktl m—=

To calculate P(i,j, k) probability, we first perform a
simple transformation, then use the conditional prob-
ability formulas:

1+1 142
Pzg7 = (Zl/s<m+m k+1<21/5
1—k+1 1—k+2
> nsme'y n)-
s=1 s=1

it+1 i+2 i—k+1

:P<Zysgm+ui_k+1<21/s, Z vs <m <
s=1 s=1 s=1

i—k+2 i—k-+1 i—k+2
<Zus>/P<ZVS§m<ZVS>

s=1 s=1 s=1

By using Lemma 2.3. we can calculate the probability,
which is in the denominator of the last fraction:
i—k42

i—k+1 .
1 —k+1 m+1
P < B e .
(;”“"—m< ;”) mi—k+2 (i—k+2)

Before the calculation of the probability, which is in the
numerator of the fraction, it is denoted by d, then it is
calculated in the following way:

m—k+1 i—k
=3 (=) 2
u=i—k
where k =1,2,...,min(i,n — j) and
it1 i+2
Pu:P< Z Vs <m—u< Z
s=i—k+2 s=i—k+2

Vikt1 Sm—u<Vigp1+ Vik+2> .

Obviously, in the last probability we deal with indepen-
dent probabilities and with the help of Lemma 2.3. for
P,, we get the following formula:

(m—uw)(m+u+1)((m+Dk+u) (m—u

P,
2(k + 1ym*+3 k

(6)
By using Lemma 2.1. as a result we get the following
formula for d:

1 m—k+1 w—1 B
_ : E P,
mi—k (z —k— 1)

where P, is calculated by the formula (6). So, we get a

(7)



formula for P(i, k) probability:
i—k+2
— m
P(i,j, k) = — =
(i—k+1) (ifli:Z

8. 8
] (8)

Note that we can calculate the probability ?(z, k) in the
same way as P(i, 7, k)[4].

S. DIFFERENTIAL EQUATIONS
AND THEIR L-S TRANSFORM

In this part, the derivation of a differential equations
and their transformation are presented using the Laplace-
Stieltjes(L-S) transform [5].

After performing some simple transformations and cal-
culating the limit of equation (1) for ¢, when h ap-
proaches 0, the following differential equation is ob-
tained:

dP; ;(t)
dt
+ QjaPi,j,l (t)+
153

+1ib Y 0kl = k+ 1) Pickr, ok (0P, 5 k) + 9)
k=0

= —(ib+ jw + a) P, ; (t)+

+njwiPi 1 (t)+
Iy -
+mjw Y Piok g1 (P, k),
k=0
where 0 <i<m,0<j5<n.
The function

p(s,i,5) = /Oooe—stpi,j (1) dt (10)

is called the Laplace-Stieltjes transform of the function
P; ;(t). Using the formula of partial integration in the
notation (10), for the Laplace-Stieltjes transform, the
following relationship will be obtained:

p(s,i,5) = / P () dt = / e AP, (1)
0 s Jo

(11)
After multiplying both sides of the differential equation
(9) by e~*', then integrating both sides with respect to
t, from 0 to oo and applying (10) and (11), the following
system of linear equations is obtained:

(s +1ib+ jw + a)p(s,i,j) = Ojap(s,i,j — 1)+
5
+mib> Gik(i—k+1)p(s,i —k+ 1,5+ k)P(i,j, k) +
k=0
+ ijjp(sﬂivj + 1)+
l2

Fmw > pls,i—k,j+k+ 1P, k),
k=0
(12)

where 0 < i < m, 0 < j <n. Note that after applying
(10) and (11), the equalities (2) and (3) will have the
following form:

p(5,0,j) =0,0<j<n
and

Z Z sp(s,i,75)) = 1.

i=0 j=0

6. CONCLUSION

In this paper, we presented a multiprocessor queue-
ing system M|M|m|n with waiting time restrictions of
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tasks. Considering the state of the system at time ¢t + h
and changes in the state of the system over the previous
time h, where h is a short time, equations were obtained,
and then differential equations, which give probabilistic
relations between the states of the system. After using
the Laplace-Stieltjes transformation for that differential
equations, the system of linear equations was obtained.
The obtained system of differential equations (9) and
their L-S transform system (12) are solvable for given
parameters. Such a model of a queuing system can play
an important role in multiprocessor systems, and the
results obtained can be applied to the development of
various scheduling algorithms and schedulers.
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