
Strided Batched Matrices Multiplication Performance in the

Architecture of GPU Accelerator

 Edita Gichunts

Institute for Informatics and Automation Problems of NAS RA
e-mail: editagich@ipia.sci.am

ABSTRACT
Many high-level solutions and scientific applications require
a high-performance batched linear algebra package. Batched
subprograms are a part of software that simultaneously use
the same action on multiple issues independent of each other.
Batched matrix-matrix multiplication (GEMM) is used in
many scientific tasks, and it is very important that we
achieve high performance when multiplying numerous small
matrices. In this work, the Strided Batched matrices
multiplication implementation in the hybrid system is
performed on the NVIDIA Tesla K40c graphic processor
using the MAGMA 2.5.0 library.
Keywords
GPU accelerator; Strided Batched matrices multiplication;
MAGMA library; hybrid architectures; C++ API; smaller
matrices; performance; subprograms.

1. INTRODUCTION
Many high-priority applications require solutions that deal
with smaller matrices. They contain quite a lot of
calculations that consist of a large number of smaller
matrices.
The emergence of heterogeneous systems with graphic
processors revealed an almost complete lack of linear
algebra software for batched operations. In these systems,
the MAGMA package has been created to implement the
problems of linear algebra.
The MAGMA program is aimed at creating linear algebra
libraries of a new generation that provide the fastest and
most accurate solution in a heterogeneous architecture from
the modern multi-core + multi-GPU system. MAGMA's
research is based on the idea that software solutions should
themselves be hybridized by combining different algorithms
in one structure to solve complex problems, such as
heterogeneity, mass paralleling, computation speed, and
CPU-GPU interaction speed. Based on this idea, the purpose
for hybrid multi-core and several graphics processors is to
develop algorithms and a linear algebra.
The MAGMA library is an open-source package that uses
the computational power of the graphics processor for
multiple BLAS and LAPACK algorithms.
MAGMA batched subprograms are intended only to perform
graphic processors and solve the problems with numerous
small matrices. Batched subprograms have been applied to
the following targeted problems. For example, the batched
LU factorization was used in underground transport
modeling [1]. Batched Cholesky Factorization and
Triangular Solutions are used to accelerate the smallest
square solutions [2, 3]. Batched matrix-matrix multiplication
(GEMM) underlies the many tensor reduction problems [4,
5]. The Block-Jacobi generation was accelerated by the
batched matrix inversion [6].
The MAGMA 2.5.0 version, released in January 2019,
contains the new integrated Strided Batched GEMM
subprogram, which is another strategy of the Batched

GEMM subprogram and can be considered as a more
optimal option. Optimization reduces the software code,
gains time and increases performance.
In this paper, we present the implementation of the Strided
Batched matrix multiplication in the CPU-GPU hybrid
system and the performance towards the Batched matrix-
matrix multiplication.
2. BATCH BLAS SUBPROGRAM
PACKAGE
The first release of the Batch BLAS [7] standard specifies
the BLAS 3 level name, type description, and C-interface
agreement. The interfaces are specifically designed to be
close to BLAS and to be hardware-independent. They are
given in C to be used in C / C ++ programs, but extensions
and development may be called from other languages, such
as Fortran. The goal is to allow the developers to express
programs, compilers, execution systems, and many smaller
actions in the form of one call of BLAS subprogram.

2.1. Naming Conventions
The Batched BLAS subprogram name follows the BLAS
appropriate subprogram name and is expanded with
_batched entry, for example, dgemm will become
dgemm_batched. And in the case of the strided version of
the matrix multiplication it will be dgemm_batched_strided.
Arguments that describe transpositions, conjugation
parameters, dimensionality, and leading dimensions are
transformed into arrays, rather than into scalars. The matrix
input/output is transmitted as an array of pointers.

2.2. Error Handling
The batched BLAS subprograms in MAGMA have a bug
fixing mechanism, which is the analog of the BLAS
standard. Digital errors are not reported, only the errors
found in the arguments are passed to the user through the
XERBLA () function. Arguments are stored in the graphic
processor memory in the form of arrays, so the error checks
are made on the GPU, and in the case of an error detection,
the processor is notified and the corresponding XERBLA ()
is called.

2.3. Stride APIs
For Batch BLAS, the offer of C ++ API is presented in the
context of the BLAS and LAPACK [8] C ++ API, which is
the basis of the SLATE [9] library. The proposed API shares
the following design solutions from C ++ BLAS API:

1. Stateless interface. The proposed batch BLAS API
will be stateless.

2. Templated routines.
3. C++ language standard. The C++11 standard

sufficiently covers all of the features required in
the proposed APIs.

CSIT Conference 2019, Yerevan, Armenia, September 23-27

191

4. Naming convention. BLAS and batch BLAS
interfaces are reachable by including the blas.hh
header and using the namespace blas.

5. Enumerated constants. The proposed APIs use the
same enum constants defined in the blas
namespace.

6. Matrix layout. For now, the proposed API shall
focus only on column-major layouts. While the
C++ BLAS API supports row-major layouts by
calling column-major routines using.

7. Integer type. The proposed API will use the
int64_t type to specify sizes and dimensions.
Although batch routines usually operate on
relatively small sizes, the use of int64_t unifies the
object dimensions between BLAS and batch BLAS
and avoids any confusion about the size of integer
type.

The API uses the standard vector std :: vector container of
C++, which provides a very flexible interface. In fact, almost
all the BLAS subprogram arguments will be converted into
the same type of std: vector argument.

Both MAGMA and cuBLAS allow the user to indirectly
transmit the array of pointers through the pointer and the
fixed step. If the matrices are at an equal distance from each
other, it is easier than simply presenting the array of pointers.
There are two solutions for Stride interface support. First of
all, it is necessary to provide an auxiliary function std::vector
<FloatType *> to complete, based on the pointer-step.
Otherwise, instead of std::vector <FloatType *>, the
proposal of C ++ API can be overloaded for the pointer-step
to be accepted. However, it is unclear whether the output /
input data pointers can be available. This adds another level
of interface complexity.

3. STRIDED BATCHED GEMM
IMPLEMENTATION IN THE HYBRID
SYSTEM
Introduce the descriptions of Batched GEMM and Strided
Batched GEMM subprograms in the Magmablas package.

Batched GEMM
Batched matrix-matrix multiplication performs the following
calculation:
for (int p = 0; p <batchCount; ++p) {
 for (int m = 0; m < M; ++m) {
 for (int n =0; n < N; ++n) {
 c_mnp = 0;
 for (int k =0; k < K; ++k)
 c_mnp += A[p] [m + k * lda] * B[p] [k + n * lda];
 C[p][m + n *ldc] = (*alpha) * c_mnp +
 +(*beta) * C[p] [m + n * ldc];
 }
 }
}
Where A[p], B[p], and C[p] are common matrices.
The gemm_batched interface in Magmablasis as follows:
magmablas_sgemm_batched(magma_trans_t transA,
magma_trans_t transB, magma_int_t m, magma_int_t n,
magma_int_t k, float alpha, float const * const * dA_array,
magma_int_t ldda, float const* const* dB_array,
magma_int_t lddb, float beta, float **dC_array,
magma_int_t lddc, magma_int_t batchCount,
magma_queue_t queue).
This is for real matrices with one by one precision.
TransA and transBcan accept three possible values:
Trans=Magma_NoTrans,

Trans=Magma_Trans,
Trans=Magma_ ConjTrans.
BatchCountis an integer that indicates the number of
matrices being processed.
Queue–the number of consecutive execution.
In the pointer-to-pointer interface above, the user must
provide a pointer to an array of pointers to matrix data,
which requires the creation and calculation of these
structured data that provides input for code, memory, and
time. Performance can be reduced when the pointers cannot
be pre-calculated and repeatedly used. Moreover, the matrix
pointers should exist on the GPU and show the GPU
memory. This means:
1) GPU memory allocation,
2) Moving the array of pointers to GPU,
3) GPU memory writes,
4) GPU memory exemption.
Fortunately, we had a new powerful solution in MAGMA
2.5.0 - the Strided Batched GEMM subprogram, in which the
transition from matrix to matrix is performed with a firm
step.

Strided Batched GEMM
The transition between the matrices in this subprogram is
made with a firm step enabling to avoid the above-
mentioned superfluous steps.
The Strided Batched matrix-matrix multiplication performs
the following calculation:
for (int p = 0; p <batchCount; ++p) {
 for (int m = 0; m < M; ++m) {
 for (int n = 0; n < N; ++n) {
 c_mnp = 0;
 for (int k = 0; k < K, ++k)
 c_mnp += A[m + k*ldA + p*strideA] * B[k + n*ldB+
 + p*strideB];
 C[m + n*ldC + p*strideC] = (*alpha)*c_mnp +
 + (*beta)*C[m + n*ldC + p*strideC];
 }
 }
}
In Magmablas, gemm_batched_strided interface is as
follows:
magmablas_sgemm_batched_strided(magma_trans_t transA,
magma_trans_t transB, magma_int_t m, magma_int_t n,
magma_int_t k, float alpha, float const * dA, magma_int_t
ldda, magma_int_t strideA, float const * dB, magma_int_t
lddb, magma_int_t strideB, float beta, float* dC,
magma_int_t lddc, magma_int_t strideC, magma_int_t
batchCount, magma_queue_t queue),
where a data pointer argument is passed as a combination
(pointer+stride) rather than explicitly as a pointer array.
The implementation of this subprogram in CPU-GPU hybrid
system is carried out by the following steps:
1. Any magma program begins with the magma_init ()
initialized function.
2. For matrices A, B, and C on the CPU, memory is allocated
by the function magma_cmalloc_cpu (), and for the matrix A
-magma_cmalloc_cpu (& A, lda * n * batchCount).
3. For matrices A, B, and C on the GPU, memory is
allocated by the magma_cmalloc () function, and for the
matrix A - magma_cmalloc (&d_A, ldda * n * batchCount).
4. In the CPU memory, using the lapackf77_xlarnv ()
function of the LAPACK library, the A, B and C matrices
are initialized, and for the matrix A - lapackf77_xlarnv
(&ione, ISEED, &sizeA, a).
5. The A, B and C matrices are moved from the CPU
memory to the GPU memory via the magma_xsetmatrix ()
function. And for the matrix A - magma_xcsetmatrix (n, n *
batchCount, a, lda, d_a, ldda).

192

6. We call the magmablas_xgemm_batched_strided ()
matrix-matrix product function for common matrices,
indicating the required values of arguments. For example,
the input common matrices and their dimensions, the firm
stride step between the matrices and the most important
value batchCount, which shows how many matrices we have
to process.
7. After the function is completed, we record the execution
time and then count the performance of the function
execution.
8. As a result, the C matrix moves from the GPU memory to
the CPU memory: magma_xgetmatrix (n, n * batchCount,
d_c, lddc, h_c, ldc).
9. After completing any program in the hybrid system, the
CPU and GPU memories will be released. It is performed
using the magma_free_cpu () and the magma_free ()
functions, respectively.
10. Any magma program ends with the magma_finalize ()
finalizing function.

4. RESULTS OF EXPERIMENTS
The experiments were conducted on NVIDIA K40c GPU.
The architecture of Tesla K40c consists of 2880 CUDA
processor cores. It is endowed with much higher bandwidth
288 GB/s of message transfer between CPU and GPU,
having 12 GB of global memory per card running at 745
MHz., GDDR5 memory interface, and CUDA C
programming environment.
The operation system of Tesla K40c is Ubuntu 14.04.2 LTS.
Cuda7 programming environment was used for the
realization of programs.
MAGMA 2.5.0 package was installed in accordance with
cuda7 environment. For the compilation of MAGMA 2.5.0
library the lapack-3.4.2, clapack-3.2.1 and atlas-3.10.0
packages were installed. Gcc-4.8, gfortran-4.8, g ++ - 4.8
and nvcc compilers were used. Such references were made in
make.inc file on libf77blas.a, libcblas.a, libf2c.a,
libcublas.so, libcudart.so, libm.a, libstdc++.so, libpthread.so,
libdl.so, libcusparse.so, libcudadevrt.a static and dynamic
libraries. MAGMA 2.5.0 package contains libmagma.a,
libmagmablas.a, libmagma_sparse.a and libblas_fix.a
libraries.
Experiments were carried out in 5000 matrices with
dimensions from 8 * 8 to 256 * 256.
Figures 1 and 2 illustrate the performance graphs of the
batched and batched_strided common matrices
multiplication subprograms for real numbers with single and
double precisions, respectively.

Fig.1. Real Single Precision

Fig.2. Real Double Precision

Experiments show that in case of single precision for real
matrices, the batched_strided subprogram exceeds the
batched subprogram by 20-30% in the case of matrices from
16 * 16 to 64 * 64 dimensions. In other cases, it exceeds at
least by 10%. The maximum performance for this case is
760 GFlops / s.
In case of double precision for real matrices, the
batched_strided subprogram exceeds the batched
subprogram by 10-15 % and achieves the maximum
performance at 400 GFlops / s.
Figures 3 and 4 depict the performance graphs of the batched
and batched_strided common matrices multiplication
subprograms for complex numbers with single and double
precisions, respectively.

Fig.3. Complex Single Precision

193

Fig.4. Complex Double Precision

In cases of single and double precisions for complex
matrices, the batched_strided subprogram exceeds the
batched subprogram by 10-20 %. With single precision, the
maximum performance reaches 1260 GFlops / s, and with
the double one - 575 GFlops / s.
Note that time is included in magmablas_xgemm_batched
of two MAGMA gemm strategies, which is required for
allocating, calculating and transmitting of pointer-to-pointer
structural data affecting the performance.
The implementation of the
magmablas_xgemm_batched_strided subprogram does not
require allocation and release of CPU and GPU memories
for arrays of pointers. They are especially useful for
calculations on GPU, where redistribution and transfer can
be relatively expensive and cause unwanted synchronization.

5. CONCLUSION
We presented the implementation of the
gemm_batched_strided subprogram of 5000 multiplication
matrices with dimensions from 8 * 8 to 256 * 256 on the
K40c graphics processor in the CPU-GPU hybrid system
using the MAGMA 2.5.0 library. Based on the results of the
experiments, we came to the following conclusion:
• In case of multiplication of numerous very small matrices,
the use of the gemm_batched_strided subprogram will result
in higher performance than the gemm_batched subprogram.
• We have an incomparable reduction in program code,
which leads to time saving, less memory-consuming of CPU
and GPU.

REFERENCES
[1] Oreste Villa, Massimiliano Fatica, Nitin Gawande, and

Antonino Tumeo. Power/Performance Trade-Os of
Small Batched LU Based Solvers on GPUs, pages 813–
825. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013. ISBN 978-3-642-40047-6. doi: 10.1007/978-3-
642-40047-681.
URL: https://doi.org/10.1007/978-3-642-40047-681.

[2] Mark Gates, Hartwig Anzt, Jakub Kurzak, and Jack J.
Dongarra. Accelerating collaborative ltering using
concepts from high performance computing. In 2015
IEEE International Conference on Big Data, Big Data
2015, Santa Clara, CA, USA, October 29 - November 1,
2015, pages 667–676, 2015. doi:
10.1109/BigData.2015.7363811.
URL: https://doi.org/10.1109/BigData.2015.7363811.

[3] Jakub Kurzak, Hartwig Anzt, Mark Gates, and Jack J.
Dongarra. Implementation and Tuning of Batched

Cholesky Factorization and Solve for NVIDIA GPUs.
IEEE Trans. Parallel Distrib. Syst., 27(7):2036–2048,
2016. doi: 10.1109/TPDS.2015.2481890.
URL: https: //doi.org/10.1109/TPDS.2015.2481890.

[4] Ahmad Abdelfattah, Marc Baboulin, Veselin Dobrev,
Jack J. Dongarra, Christopher W.Earl, Joel Falcou,
Azzam Haidar, Ian Karlin, Tzanio V. Kolev, Ian
Masliah, and Stanimire Tomov. High-Performance
Tensor Contractions for GPUs. In International
Conference on Computational Science 2016, ICCS 2016,
6-8 June 2016, San Diego, California, USA, pages 108–
118, 2016. doi: 10.1016/j.procs.2016.05.302.
URL: https://doi.org/10.1016/j.procs.2016.05.302.

[5] Yang Shi, U. N. Niranjan, Animashree Anandkumar, and
Cris Cecka. Tensor Contractions with Extended BLAS
Kernels on CPU and GPU. In 23rd IEEE International
Conference on High Performance Computing, HiPC
2016, Hyderabad, India, December 19-22, 2016, pages
193–202, 2016. doi: 10.1109/HiPC.2016.031.
URL: https://doi.org/10.1109/HiPC.2016.031.

[6] Hartwig Anzt, Jack J. Dongarra, Goran Flegar, and
Enrique S. Quintana-Orti. Batched Gauss-Jordan
Elimination for Block-Jacobi Preconditioner Generation
on GPUs. In Proceedings of the 8th International
Workshop on Programming Models and Applications for
Multicores and Manycores, PMAM@PPoPP 2017,
Austin, TX, USA, February 5, 2017, pages 1–10, 2017.
doi: 10.1145/3026937.3026940.
URL: http://doi.acm.org/10.1145/3026937.3026940.

[7] Jack Dongarra, Iain Du, Mark Gates, Azzam Haidar,
Sven Hammarling, Nicholas J. Higham, Jonathon Hogg,
Pedro Valero-Lara, Samuel D. Relton, Stanimire Tomov,
and Mawussi Zounon. A Proposed API for Batched
Basic Linear Algebra Subprograms. Technical report,
Manchester Institute for Mathematical Sciences, April
2016.
URL: http://eprints.maths.manchester.ac.uk/id/eprint/
2464.[MIMS Preprint].

[8] Mark Gates, Piotr Luszczek, Jakub Kurzak, Jack
Dongarra, Konstantin Arturov, Cris Cecka, and Chip
Freitag. C++ API for BLAS and LAPACK. Technical
Report 2, ICL-UT-17-03, 06-2017 2017. Revision 06-
2017.

[9] Jakub Kurzak, PanruoWu, Mark Gates, Ichitaro
Yamazaki, Piotr Luszczek, Gerald Ragghianti, and Jack
Dongarra. Designing SLATE: Software for Linear
Algebra Targeting Exascale. SLATE Working Notes 3,
ICL-UT-17-06, 10-2017 2017.

194

https://doi.org/10.1007/978-3-642-40047-681
https://doi.org/10.1109/
https://doi.org/10.1016/j.procs.2016.05.302
https://doi.org/10.1109/HiPC.2016.031
http://doi.acm.org/10.1145/3026937.3026940
http://eprints.maths/

	DT.pdf (p.85-107)
	DT_Title.pdf (p.1)
	New - Copy.pdf (p.2)
	50_190603_181912_DT_FinalSubmissionCSIT2019_FINAL.pdf (p.3-6)
	53_190607_110134_DT_CSIT_2019_Accurate_Pressure_Calculation_Method.pdf (p.7-10)
	81_190731_112131_DT_CSIT2019_p2_final.pdf (p.11-14)
	82_190731_130632_DT_CSIT2019_p1_final.pdf (p.15-18)
	DT_P_Title.pdf (p.19)
	New.pdf (p.20)
	03_190326_015335_DT_petrosyan1_FINAL.pdf (p.21-23)

	ITCT.pdf (p.142-150)
	ITCT_Title.pdf (p.1)
	New.pdf (p.2)
	73_190710_184356_ITCT_CSIT_Haroutunian_FINAL.pdf (p.3-6)
	69_190628_160849_ITCT_wiretap_csit_FINAL.pdf (p.7-9)

