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ABSTRACT 
Many high-level solutions and scientific applications require 
a high-performance batched linear algebra package. Batched 
subprograms are a part of software that simultaneously use 
the same action on multiple issues independent of each other. 
Batched matrix-matrix multiplication (GEMM) is used in 
many scientific tasks, and it is very important that we 
achieve high performance when multiplying numerous small 
matrices. In this work, the Strided Batched matrices 
multiplication implementation in the hybrid system is 
performed on the NVIDIA Tesla K40c graphic processor 
using the MAGMA 2.5.0 library. 
Keywords 
GPU accelerator; Strided Batched matrices multiplication; 
MAGMA library; hybrid architectures; C++ API; smaller 
matrices; performance; subprograms. 
 
1. INTRODUCTION 
Many high-priority applications require solutions that deal 
with smaller matrices. They contain quite a lot of 
calculations that consist of a large number of smaller 
matrices. 
The emergence of heterogeneous systems with graphic 
processors revealed an almost complete lack of linear 
algebra software for batched operations. In these systems, 
the MAGMA package has been created to implement the 
problems of linear algebra. 
The MAGMA program is aimed at creating linear algebra 
libraries of a new generation that provide the fastest and 
most accurate solution in a heterogeneous architecture from 
the modern multi-core + multi-GPU system. MAGMA's 
research is based on the idea that software solutions should 
themselves be hybridized by combining different algorithms 
in one structure to solve complex problems, such as 
heterogeneity, mass paralleling, computation speed, and 
CPU-GPU interaction speed. Based on this idea, the purpose 
for hybrid multi-core and several graphics processors is to 
develop algorithms and a linear algebra. 
The MAGMA library is an open-source package that uses 
the computational power of the graphics processor for 
multiple BLAS and LAPACK algorithms. 
MAGMA batched subprograms are intended only to perform 
graphic processors and solve the problems with numerous 
small matrices. Batched subprograms have been applied to 
the following targeted problems. For example, the batched 
LU factorization was used in underground transport 
modeling [1]. Batched Cholesky Factorization and 
Triangular Solutions are used to accelerate the smallest 
square solutions [2, 3]. Batched matrix-matrix multiplication 
(GEMM) underlies the many tensor reduction problems [4, 
5]. The Block-Jacobi generation was accelerated by the 
batched matrix inversion [6]. 
The MAGMA 2.5.0 version, released in January 2019, 
contains the new integrated Strided Batched GEMM 
subprogram, which is another strategy of the Batched 

GEMM subprogram and can be considered as a more 
optimal option. Optimization reduces the software code, 
gains time and increases performance. 
In this paper, we present the implementation of the Strided 
Batched matrix multiplication in the CPU-GPU hybrid 
system and the performance towards the Batched matrix-
matrix multiplication. 
2. BATCH BLAS SUBPROGRAM 
PACKAGE 
The first release of the Batch BLAS [7] standard specifies 
the BLAS 3 level name, type description, and C-interface 
agreement. The interfaces are specifically designed to be 
close to BLAS and to be hardware-independent. They are 
given in C to be used in C / C ++ programs, but extensions 
and development may be called from other languages, such 
as Fortran. The goal is to allow the developers to express 
programs, compilers, execution systems, and many smaller 
actions in the form of one call of BLAS subprogram. 
 
2.1. Naming Conventions 
The Batched BLAS subprogram name follows the BLAS 
appropriate subprogram name and is expanded with 
_batched entry, for example, dgemm will become 
dgemm_batched. And in the case of the strided version of 
the matrix multiplication it will be dgemm_batched_strided. 
Arguments that describe transpositions, conjugation 
parameters, dimensionality, and leading dimensions are 
transformed into arrays, rather than into scalars. The matrix 
input/output is transmitted as an array of pointers. 
 
2.2. Error Handling  
The batched BLAS subprograms in MAGMA have a bug 
fixing mechanism, which is the analog of the BLAS 
standard. Digital errors are not reported, only the errors 
found in the arguments are passed to the user through the 
XERBLA () function. Arguments are stored in the graphic 
processor memory in the form of arrays, so the error checks 
are made on the GPU, and in the case of an error detection, 
the processor is notified and the corresponding XERBLA () 
is called. 
 
2.3. Stride APIs 
For Batch BLAS, the offer of C ++ API is presented in the 
context of the BLAS and LAPACK [8] C ++ API, which is 
the basis of the SLATE [9] library. The proposed API shares 
the following design solutions from C ++ BLAS API: 

1. Stateless interface. The proposed batch BLAS API 
will be stateless. 

2. Templated routines.  
3. C++ language standard. The C++11 standard 

sufficiently covers all of the features required in 
the proposed APIs. 
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4. Naming convention. BLAS and batch BLAS 
interfaces are reachable by including the blas.hh 
header and using the namespace blas. 

5. Enumerated constants. The proposed APIs use the 
same enum constants defined in the blas 
namespace. 

6. Matrix layout. For now, the proposed API shall 
focus only on column-major layouts. While the 
C++ BLAS API supports row-major layouts by 
calling column-major routines using. 

7. Integer type. The proposed API will use the 
int64_t type to specify sizes and dimensions. 
Although batch routines usually operate on 
relatively small sizes, the use of int64_t unifies the 
object dimensions between BLAS and batch BLAS 
and avoids any confusion about the size of integer 
type. 

The API uses the standard vector std :: vector container of 
C++, which provides a very flexible interface. In fact, almost 
all the BLAS subprogram arguments will be converted into 
the same type of std: vector argument. 

Both MAGMA and cuBLAS allow the user to indirectly 
transmit the array of pointers through the pointer and the 
fixed step. If the matrices are at an equal distance from each 
other, it is easier than simply presenting the array of pointers. 
There are two solutions for Stride interface support. First of 
all, it is necessary to provide an auxiliary function std::vector 
<FloatType *> to complete, based on the pointer-step. 
Otherwise, instead of std::vector <FloatType *>, the 
proposal of C ++ API can be overloaded for the pointer-step 
to be accepted. However, it is unclear whether the output / 
input data pointers can be available. This adds another level 
of interface complexity. 

 
3. STRIDED BATCHED GEMM 
IMPLEMENTATION IN THE HYBRID 
SYSTEM 
Introduce the descriptions of Batched GEMM and Strided 
Batched GEMM subprograms in the Magmablas package. 
 
Batched GEMM 
Batched matrix-matrix multiplication performs the following 
calculation: 
for ( int p = 0; p <batchCount; ++p ) { 
   for ( int m = 0; m < M; ++m ) { 
      for ( int n =0; n < N; ++n) { 
         c_mnp = 0; 
         for ( int k =0; k < K; ++k ) 
          c_mnp += A[ p ] [ m + k * lda ] * B[ p ] [ k + n * lda ]; 
         C[ p ][ m + n *ldc ] = ( *alpha ) * c_mnp +  
                 +( *beta ) * C[ p] [ m + n * ldc]; 
       } 
    } 
} 
Where A[p], B[p], and C[p] are common matrices. 
The gemm_batched interface in Magmablasis as follows: 
magmablas_sgemm_batched(magma_trans_t transA, 
magma_trans_t transB, magma_int_t m, magma_int_t n, 
magma_int_t k, float alpha, float const * const * dA_array, 
magma_int_t ldda, float const* const* dB_array, 
magma_int_t lddb, float beta, float **dC_array, 
magma_int_t lddc, magma_int_t batchCount, 
magma_queue_t queue ). 
This is for real matrices with one by one precision. 
TransA and transBcan accept three possible values: 
Trans=Magma_NoTrans, 

Trans=Magma_Trans, 
Trans=Magma_ ConjTrans. 
BatchCountis an integer that indicates the number of 
matrices being processed. 
Queue–the number of consecutive execution. 
In the pointer-to-pointer interface above, the user must 
provide a pointer to an array of pointers to matrix data, 
which requires the creation and calculation of these 
structured data that provides input for code, memory, and 
time. Performance can be reduced when the pointers cannot 
be pre-calculated and repeatedly used. Moreover, the matrix 
pointers should exist on the GPU and show the GPU 
memory. This means: 
1) GPU memory allocation, 
2) Moving the array of pointers to GPU, 
3) GPU memory writes, 
4) GPU memory exemption. 
Fortunately, we had a new powerful solution in MAGMA 
2.5.0 - the Strided Batched GEMM subprogram, in which the 
transition from matrix to matrix is performed with a firm 
step. 
 
Strided Batched GEMM 
The transition between the matrices in this subprogram is 
made with a firm step enabling to avoid the above-
mentioned superfluous steps. 
The Strided Batched matrix-matrix multiplication performs 
the following calculation:  
for (int p = 0; p <batchCount; ++p) { 
   for (int m = 0; m < M; ++m) { 
      for (int n = 0; n < N; ++n) { 
          c_mnp = 0; 
          for (int k = 0; k < K, ++k) 
           c_mnp += A[m + k*ldA + p*strideA] * B[k + n*ldB+  
                           + p*strideB]; 
         C[m + n*ldC + p*strideC] = (*alpha)*c_mnp +  
                     + (*beta)*C[m + n*ldC + p*strideC]; 
    } 
  } 
} 
In Magmablas, gemm_batched_strided interface is as 
follows: 
magmablas_sgemm_batched_strided(magma_trans_t transA, 
magma_trans_t transB, magma_int_t m, magma_int_t n, 
magma_int_t k, float alpha, float const * dA, magma_int_t 
ldda, magma_int_t strideA, float const * dB, magma_int_t 
lddb, magma_int_t strideB, float beta, float* dC,  
magma_int_t lddc, magma_int_t strideC, magma_int_t 
batchCount, magma_queue_t  queue ), 
where a data pointer argument is passed as a combination 
(pointer+stride) rather than explicitly as a pointer array. 
The implementation of this subprogram in CPU-GPU hybrid 
system is carried out by the following steps: 
1. Any magma program begins with the magma_init () 
initialized function. 
2. For matrices A, B, and C on the CPU, memory is allocated 
by the function magma_cmalloc_cpu (), and for the matrix A  
-magma_cmalloc_cpu (& A, lda * n * batchCount). 
3. For matrices A, B, and C on the GPU, memory is 
allocated by the magma_cmalloc () function, and for the 
matrix A - magma_cmalloc (&d_A, ldda * n * batchCount). 
4. In the CPU memory, using the lapackf77_xlarnv () 
function of the LAPACK library, the A, B and C matrices 
are initialized, and for the matrix A -  lapackf77_xlarnv 
(&ione, ISEED, &sizeA, a). 
5.  The A, B and C matrices are moved from the CPU 
memory to the GPU memory via the magma_xsetmatrix () 
function. And for the matrix A -  magma_xcsetmatrix (n, n * 
batchCount, a, lda, d_a, ldda). 
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6. We call the magmablas_xgemm_batched_strided () 
matrix-matrix product function for common matrices, 
indicating the required values of arguments. For example, 
the input common matrices and their dimensions, the firm 
stride step between the matrices and the most important 
value batchCount, which shows how many matrices we have 
to process. 
7. After the function is completed, we record the execution 
time and then count the performance of the function 
execution. 
8. As a result, the C matrix moves from the GPU memory to 
the CPU memory: magma_xgetmatrix (n, n * batchCount, 
d_c, lddc, h_c, ldc). 
9. After completing any program in the hybrid system, the 
CPU and GPU memories will be released. It is performed 
using the magma_free_cpu () and the magma_free () 
functions, respectively. 
10. Any magma program ends with the magma_finalize () 
finalizing function. 
  
4. RESULTS OF EXPERIMENTS 
The experiments were conducted on NVIDIA K40c GPU. 
The architecture of Tesla K40c consists of 2880 CUDA 
processor cores. It is endowed with much higher bandwidth 
288 GB/s of message transfer between CPU and GPU, 
having 12 GB of global memory per card running at 745 
MHz., GDDR5 memory interface, and CUDA C 
programming environment. 
The operation system of Tesla K40c is Ubuntu 14.04.2 LTS. 
Cuda7 programming environment was used for the 
realization of programs.  
MAGMA 2.5.0 package was installed in accordance with 
cuda7 environment. For the compilation of MAGMA 2.5.0 
library the lapack-3.4.2, clapack-3.2.1 and atlas-3.10.0 
packages were installed. Gcc-4.8, gfortran-4.8, g ++ - 4.8 
and nvcc compilers were used. Such references were made in 
make.inc file on libf77blas.a, libcblas.a, libf2c.a, 
libcublas.so, libcudart.so, libm.a, libstdc++.so, libpthread.so, 
libdl.so, libcusparse.so, libcudadevrt.a static and dynamic 
libraries. MAGMA 2.5.0 package contains libmagma.a, 
libmagmablas.a, libmagma_sparse.a and libblas_fix.a 
libraries. 
Experiments were carried out in 5000 matrices with 
dimensions from 8 * 8 to 256 * 256.  
Figures 1 and 2 illustrate the performance graphs of the 
batched and batched_strided common matrices 
multiplication subprograms for real numbers with single and 
double precisions, respectively. 
 

 
 

Fig.1. Real Single Precision 

 

 
 

Fig.2. Real Double Precision 
 

Experiments show that in case of single precision for real 
matrices, the batched_strided subprogram exceeds the 
batched subprogram by 20-30% in the case of matrices from 
16 * 16 to 64 * 64 dimensions. In other cases, it exceeds at 
least by 10%. The maximum performance for this case is 
760 GFlops / s. 
In case of double precision for real matrices, the 
batched_strided subprogram exceeds the batched 
subprogram by 10-15 % and achieves the maximum 
performance at 400 GFlops / s. 
Figures 3 and 4 depict the performance graphs of the batched 
and batched_strided common matrices multiplication 
subprograms for complex numbers with single and double 
precisions, respectively. 
 

 
 

Fig.3. Complex Single Precision 
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Fig.4. Complex Double Precision 
 

In cases of single and double precisions for complex 
matrices, the batched_strided subprogram exceeds the 
batched subprogram by 10-20 %. With single precision, the 
maximum performance reaches 1260 GFlops / s, and with 
the double one - 575 GFlops / s. 
Note that time is  included in magmablas_xgemm_batched 
of two MAGMA gemm strategies, which is required for 
allocating, calculating and transmitting of pointer-to-pointer 
structural data affecting the performance. 
The implementation of the 
magmablas_xgemm_batched_strided subprogram does not 
require allocation and release of CPU and GPU memories 
for arrays of pointers. They are especially useful for 
calculations on GPU, where redistribution and transfer can 
be relatively expensive and cause unwanted synchronization. 
 
5. CONCLUSION  
We presented the implementation of the 
gemm_batched_strided subprogram of 5000 multiplication 
matrices with dimensions from 8 * 8 to 256 * 256 on the 
K40c graphics processor in the CPU-GPU hybrid system 
using the MAGMA 2.5.0 library. Based on the results of the 
experiments, we came to the following conclusion: 
• In case of multiplication of numerous very small matrices, 
the use of the gemm_batched_strided subprogram will result 
in higher performance than the gemm_batched subprogram. 
• We have an incomparable reduction in program code, 
which leads to time saving, less memory-consuming of CPU 
and GPU. 
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