
Heterogeneous Hashing Optimization with OpenCL and
CUDA

Nikita Storublevtcev
St-Petersburg State University,

St-Petersburg, Russia

e-mail: 100.rub@mail.ru

Victor Smirnov
St-Petersburg State University,

St-Petersburg, Russia

e-mail: ariox41@gmail.com

Alexander Bogdanov
St-Petersburg State University and
Russian Economical University,

St-Petersburg, Russia

e-mail: bogdanov@csa.ru

ABSTRACT
Modern GPU-based heterogeneous systems offer an ex-
ceptional computation potential, but require specific ex-
pertise on the part of the developer to fully exploit
it. There are also multiple technologies on the mar-
ket that support GPU-based computation, but they all
have different demands, quirks and range of supported
hardware. It is important for any project aiming use
heterogeneous systems to make an informed choice on
what technology to employ or support. In this paper
we compare performance of GOST 34.11-2012 (”Stri-
bog”) hashing algorithm implemented using CUDA and
OpenCL. This algorithm also has a lot of potential in
blockchain technology. We also discuss the optimization
techniques used and their effectiveness in terms of both
computation speed-up and resource investment.

Keywords
Computing, CUDA, OpenCL, Hashing, Performance,
Heterogeneous, C++

1. INTRODUCTION
Hashing is a widely-used operation in today’s inter-
net infrastructure. Everything from search functions
and data protection protocols to blockchain platforms
rely on it to function. Hashing of large amounts of
data, particularly in case of secure hashing algorithms,
is resource-intensive, so any optimization in that area is
welcome. It is well-known that most hashing algorithms
can be easily adapted to heterogeneous GPU-based sys-
tems, and receive significant boosts in performance from
that. Such porting has been done to all of the popular
algorithms, but less-known ones are frequently forgot-
ten. There are also some algorithms that are specifically
designed to be ASIC-resistant or even GPU-resistant.

The algorithm of interest to us is GOST 34.11-2012
”Stribog”, the use of which is mandated by Russian
Government. We were unable to find any open-source
heterogeneous implementation of this algorithm, so we
elected to create and benchmark it on the test case of
long multi-block message hashing. We use that case in-
stead of cryptocurrency mining, as it is more relevant
to the general public. We also measure the performance
in Megabytes per second, instead of hashes per second,
though these units can be converted into one another in
most cases.

In this paper we present the performance results of two
implementations of Stribog-512 hashing algorithm, one
based on CUDA technology and another on OpenCL,
and compare them to CPU-based performance and to
each other. We also discuss the algorithm’s suitability
for GPU acceleration and techniques that can be used
to accelerate it.

2. ANATOMY OF STRIBOG
Stribog, detailed in GOST 34.11-2012 federal standard
of Russian Federation, is a cryptographic hash function,
created to replace an obsolete GOST R 34.11-94 stan-
dard. It is based on the MerkleDamgrd construction,
with block size of 512 bit. Overall structure resembles
that of the old standard, with significant changes to
compression function, which operates in MiyaguchiPre-
neel mode and uses a 12-round cipher with 512-bit block
and key [1].

When a message is processed by Stribog it is first bro-
ken down into 512-bit blocks. If message’s length is not
a multiple of 512, the last block (one with a size less
than 512) is padded to the desired size. Each block
is then processed sequentially as each block processing
updates internal constants for the next block. Process-
ing of a block includes a compression function, which, in
turn, includes a 12-round AES-like cipher based on LPS
transformations [2], where L stands for linear transfor-
mation, P marks byte reordering, and S is a non-linear
bijective transformation. Stribog can also work in 256-
bit mode by changing its initial internal state and trun-
cating the output hash.

The byte order is a contentious issue in Stribog as it
is not explicitly dictated by the standard, which leads
to difficulties in determining if the implementation is
done correctly. Our implementations are based on ones
by RustCrypto [3] and Oleksandr Kazymyrov [4]. These
implementations use little-endian byte order and, there-
fore, do not pass comparison tests against big-endian
ones. Based on them, we created big-endian table im-
plementations that pass the comparison tests with pop-
ular non-table big-endian ones.

Since its release, Stribog has passed cryptanalysis trials
by the international community with several reduced-
round version collision attacks published, and the only
concerning result being as-of-yet unconfirmed weakness
of the S-Box generation algorithm [5]. It is considered
secure overall, but still has a very low adoption rate,
despite having recently been included into the Linux
kernel as one of the available hashing algorithms. Only
the future will show if it sees wide adoption.

CSIT Conference 2019, Yerevan, Armenia, September 23-27

195



3. GPU SPECIFICS
GPU-based computational systems excel at massive par-
allelism, especially in data-parallel cases, so we have to
analyze Stribog with that in mind. Processing of sepa-
rate messages can always be parallelized, because they
are independent of each-other. One message is unlikely
to take up all the available GPU resources in the sys-
tem, so it is an obvious and easy way to increase overall
performance. However, it requires having several differ-
ent messages that have to be hashed in the first place,
which might now always be the case. Additionally, it
is not always easy to organize a non-exclusive use of
the GPU, that would allow for the message hashing to
only use as much resources as needed and not the whole
device. NVIDIA provides some virtualization capabili-
ties in its products, which show inconsistent results, but
OpenCL has no such functionality. This means that
most of the time we will have to manually organize the
parallel use of GPU resources to process several mes-
sages at the same time. Things become even more com-
plex when the messages are of different length. We can
either package one block from each message and send
them for processing as a batch, or send the maximum
possible number of blocks (limited by the shortest mes-
sage) from each, which will reduce the memory transfer
overhead. Overall, this approach can be implemented
for Stribog.

Looking deeper, we immediately see that inter-block
parallelism within a single message is not possible, be-
cause processing of each block changes global internal
constants used in further calculations. We have no choice
but to leave this level sequential, and look deeper for
more parallelism opportunities.

LPS transformations may be exactly the thing we are
looking for. All of them are vector operations, which
have an excellent potential for GPU optimization. On
the other hand, each operation is always done on a 512-
bit block so it does not scale very well, as each block
still has to be processed sequentially. As each block
undergoes multiple sequential transformations, it may
be a good idea to place it in local memory space of the
GPU to cut down on access delays. This alone has the
potential to significantly increase the performance. The
whole algorithm, in general, makes heavy use of various
constants, which are ideal candidates for placing into
the register memory, reducing access times even further.

As we cannot go deeper than vector operations, this
constitutes all the possible heterogeneous optimizations
available for this algorithm. After reviewing all the
options, a table version of Stribog was chosen for im-
plementation. Table version combines LPS transforma-
tions, by preemptively calculating constants and com-
bining them into a single table. This increases the num-
ber of constants used, but reduces the number of reads
required for each.

4. RESULTS
CPU implementation was written in Rust programming
language, and makes uses of automatic SIMD optimiza-
tion provided by the compiler. The resulting perfor-
mance is roughly equivalent to that of other correct and
optimized implementations. Faster implementations do
exist, but they don’t pass the comparison tests, and we
cannot verify their correctness.

GPU implementations were created using OpenCL 1.2

and CUDA 9.2. OpenCL host-side code written in Rust,
and kernel code written in C. CUDA version was written
entirely in C++. Test platform consists of Intel Xeon
E5-2690 v4 CPU and NVIDIA GP102GL Quadro P6000
GPU, running under Fedora 26 operating system.

Table 1 contains the benchmark results for processing
of one message at a time. It is obvious that CPU im-
plementation is faster here, as CPU has a much faster
clock speed, and we don’t make use of the massive par-
allelism of GPU. However, the difference in performance
is not proportional to the frequency difference. Here we
see how the CPU-GPU memory transfer overhead tanks
the resulting performance of GPU versions. Next, let us
look at the best-possible situation for GPU.

Table 1: Performance results for individual mes-
sage processing

Implementation Peak performance (MB/s)

CPU 19.05

OpenCL 2.63

CUDA 3.34

Table 2 showcases the peak performance when process-
ing multiple messages at the same time. As predicted, it
was not possible to data-parallelize the whole algorithm
because some parts of it have to remain sequential, but
we managed to parallelize the processing of each indi-
vidual block of 64 bytes using 8 threads for each. The
number of threads is determined by the specifics of LPS
transformations, where each block is divided into 8 64-
bit parts. For this case we used messages of constant
length of 512 blocks (32 MB) that were all processed
at the same time. The GPU finally outperformed the
CPU after 128 concurrent messages being processed,
and plateaued at around 4096 messages.

Table 2: Performance results for concurrent
message processing

Implementation Peak performance (MB/s)

CPU 201.33

OpenCL 380.92

CUDA 479.95

5. CONCLUSION
Results suggest that Stribog hashing algorithm is rel-
atively GPU-resistant. It does not scale well for the
massively-parallel GPU architecture, mandating several
parts of its structure to remain sequential, but can be
adapted for parallel processing of multiple independent
messages. The extent of that use-case is not clear, as it
is quite rare to have hundreds of messages that require
hashing at the same time. However, there is a potential
for further optimization of vector operation used at the
lowest level of the algorithm.

REFERENCES
[1] GOST R 34.11-2012: Hash Function

https://tools.ietf.org/html/rfc6986

[2] GOST-R-34-11-2012 http:

//docs.cntd.ru/document/gost-r-34-11-2012
196



[3] https://github.com/RustCrypto/hashes/tree/

master/streebog

[4] https://github.com/okazymyrov/stribog

[5] Reverse-Engineering the S-Box of Streebog,
Kuznyechik and STRIBOBr1
https://eprint.iacr.org/2016/071

197


	DT.pdf (p.85-107)
	DT_Title.pdf (p.1)
	New - Copy.pdf (p.2)
	50_190603_181912_DT_FinalSubmissionCSIT2019_FINAL.pdf (p.3-6)
	53_190607_110134_DT_CSIT_2019_Accurate_Pressure_Calculation_Method.pdf (p.7-10)
	81_190731_112131_DT_CSIT2019_p2_final.pdf (p.11-14)
	82_190731_130632_DT_CSIT2019_p1_final.pdf (p.15-18)
	DT_P_Title.pdf (p.19)
	New.pdf (p.20)
	03_190326_015335_DT_petrosyan1_FINAL.pdf (p.21-23)

	ITCT.pdf (p.142-150)
	ITCT_Title.pdf (p.1)
	New.pdf (p.2)
	73_190710_184356_ITCT_CSIT_Haroutunian_FINAL.pdf (p.3-6)
	69_190628_160849_ITCT_wiretap_csit_FINAL.pdf (p.7-9)


