
Code Sequence Generation with Genetic Algorithms, 
with Correlation Properties Similar to GPS C/A Codes 

Hovhannes, Gomtsyan 
NPUA 

Yerevan, Armenia 
e-mail: hovhannes.gomcyan@politechnic.am

Robert, Apikyan 
NPUA 

Yerevan, Armenia 
e-mail: apikyan41@gmail.com

ABSTRACT 
C/A codes (course acquisition codes) are pseudo random 
generated codes with good correlation properties. Those codes 
are being used in GPS. Each satellite vehicle can generate its 
unique C/A code sequence and modulate it with output data 
signal. Each millisecond of satellite data contains 1024 chips 
(bits) of C/A codes and each 1ms this code sequences are being 
repeated. Receivers are using locally generated C/A codes in 
order to filter out the satellite signal from aggregated signals 
near the receiver’s antenna. As the C/A codes are being 
repeated in each 1ms, in theory it’s enough of 1ms satellite 
signal in order to determine from which satellite it is coming. 
C/A code’s correlation properties are being used for filtering 
incoming signals. The higher is the autocorrelation properties 
of the code sequence, the easier to filter it out from summary 
signal. In other words, the same C/A codes have high 
correlation values and different C/A codes have low 
correlation values [1]. The target of this article is to write a 
program using genetic algorithms [2] that will generate code 
sequences from 1 and -1 values that will have nearly the same 
correlation properties as the C/A code, where each individual 
in algorithm will contain 32 number of code sequences with 
1024 length that has low cross correlation and high 
autocorrelation properties. 

Keywords 
C/A code, pseudo random codes, GPS, signal correlation, 
genetic algorithms, Java. 

1. INTRODUCTION
The program that will generate n number of different codes 
with l length is based on genetic algorithms, where each 
individual contains an array of n * l length. The program will 
be written in Java programming language. For correlation 
functions and local C/A code generation we will use 
“GPSToolkit” [9] library.  

In Genetic algorithms the individual is an abstract 
representation of a solution, and it contains the fitness value 
for that solution, typically fitness values are the numbers 
between 0 and 1, and where 1 is the best solution and the 0 is 
the worst. Group of individuals called a population, in other 
words population is a holder for solutions array. Crossover and 
mutation could be applied to population. Genetic algorithms 
could be divided into 6 abstract steps, as shown in Figure 1.  

First step is called “Population Initialization”, where the 
individuals are created. Usually they are created based on 
random behavior during the first initialization process. After 
initialization the fitness calculation function will be applied to 
population, for defining the individual’s fitness for the required 
solution. The important step is “Termination condition check”. 
In this step we are searching the individual that will fit our 
condition. Usually this is not happening for the first time with 
randomly generated populations. The genetic algorithm will 
apply crossover and mutation to population’s individuals, 

while termination condition is not giving a positive result, the 
“Selection” step is a part of “Crossover”. For crossover we 
need two individuals that have high fitness values. There are a 
number of algorithms for implementing selection and 
crossover. The “Mutation” is an important step as well. 
Genetic algorithm that is working with only crossover function 
will stuck at some point, because it will not have a chance to 
evolve without mutation function. After applying crossover 
and mutation to population, the algorithm will calculate the 
individual’s fitness values and will check these values if they 
fit to the termination condition [2]. 

In upcoming sections, we will discuss the implementation of 
genetic algorithms steps that are going to produce 32 number 
of codes with length 1024 that have low cross correlation and 
high autocorrelation properties. In other words, these codes 
will maximally differ from each other. 

1.1. Individual 
The first step for implementing the genetic algorithm is to 
define individual’s model. In our case a single individual will 
contain an array with 32 * 1024 bits and with a fitness value. 
From 0-1023 bits in this array are codes for the first satellite, 
from 1024 – 2047 are codes for the second satellite and exc.  
The possible values for bit in array are 1 and -1. After the first 
initialization, each individual will randomly generate and fill 
array with 1 and -1. You can find the Java model of individual 
in [4] directory.  

Population initialization 

Calculate fitness 

Termination 
condition check 

Selection 

Crossover 

Mutation 

Calculate fitness 

- + 

end 

Figure 1. Genetic algorithm’s block diagram 

CSIT Conference 2019, Yerevan, Armenia, September 23-27

218

mailto:hovhannes.gomcyan@politechnic.am


1.2. Fitness Calculation 
As mentioned earlier each individual contains 32*1024 bits (1 
and –1), where the first 1024 bits are intended for the first 
satellite, the next chunk of 1024 bits (from 1024 - 2047) are 
intended for the second satellite and exc. While calculating the 
function of fitness we take the first satellite’s bits (0-1023) and 
correlate them with other satellite’s bits iterating through each 
1024 bits as shown in Figure 2. As we can see fitness function 
implementation  has two loops [6]. First loop's index is i, its 
range is from 0 to 32*1024, and it's incrementing with 1024 on 
each loop. The similar loop is designed for second iteration 
with j. Here we take satellite[i] and calculate its correlation [8] 
value with other satellites with index j. As you can see 
fitnessValue = fitnessValue + (1 – correlationValue). The key 
point here is 1 – correlationValue , the reason for this is that 
we search codes that are mostly differ from each other. The 
correlationValue shows how similar are two codes, so by 
subtracting it from 1 we will receive the difference value. In 
the code of fitness function [6], you can see that after each 
iteration fitnessValue is divided by codes count in individual, 
this is for receiving an average value between -1 and 1.  

• If individual has fitness that is closer to -1, it means
that its codes are mostly familiar to each other,
• If individual has fitness value closer to 1, it means
that its codes mostly differ from each other.
We will iterate through individuals and pick the one that

has higher values, while checking for termination condition in 
the next section. 

1.3. Termination Condition 
In this step of algorithm, we will check as name explains the 
termination, in other words when to stop our genetic algorithm.  
We can implement this function in different ways, the simplest 
implementation could be, to check the higher fittest value in 
population, whenever it is higher from some nominal value, we 
will terminate the algorithm. But with this approach it is easy 
to stick in local optimum solution. Let’s say that the fittest 
value is 0.85 in population and the nominal fitness value we 
have chosen is 0.8. The termination condition will work, since 
the fittest value is higher than required nominal value, but in 
upcoming evolution, population could evolve and give us 
higher fitness values than 0.85. To overcome this problem, we 
will not be using nominal fitness value, instead we will add two 
variables currentEffectiveGenerationFitness and 
currentEffectiveGenerationCounter. 

• currentEffectiveGenerationFitness: This variable
will remember the highest fitness value in population in each 
termination condition check. 

• currentEffectiveGenerationCounter: Initially some
high value (like 1000 or 2000) will be assigned to this variable. 
While every generation check, if the fitness value is not 
changed this variable’s value will be decremented and checked 
for zero equality, if its value is equal to zero, then algorithm 
will be terminated, in other hand if the fitness value is changed 
the variable’s value will be assigned to its initial value. For 
example, if its initial value is equal to 1000, then genetic 
algorithm will terminate whenever the fitness value is not 
changed in past 1000 generations [6].  

1.4. Selection and Crossover 
This is one of the important points in genetic algorithms. In our 
case, we need to make a crossover of two individuals where 
each individual contains 32 * 1024 codes.  For making a 
crossover, at first we need to pick two parents from population 
[5]. Important point here is to pick parents that have higher 
fitness values. For that we are going to sort the existing 
individuals in population by higher fitness value in descending 
order. By iterating through sorted individuals we well pick the 
first parent as shown in Figure 3. The second parent will be 
selected with roulette selection algorithm [6]. In short, with 
roulette selection algorithm individuals with higher fitness 
value have more chances to be picked, then individuals with 
lower fitness s value. 

Crossover rate parameter will be used in order to add 
randomness in applying crossover to individual. The random 
number will be generated between [0,1), if it is smaller than 
crossover rate value, crossover will be applied to individual, 
otherwise it will be moved to new population without 
crossover. After picking two parents we make a crossover and 
create a new individual. While crossover parent that has higher 
fitness value will provide more bits than other parent.   

Also for crossover we will use elitism count. If elitism count is 
two, then the first two individuals will be inserted to a new 
population without crossover. This approach allows to always 
keep individuals with higher fitness values.   

fitnessValue = 0 

i = 0 : 32*1024; i += 1024 

Picking Satellite[i] 

j = 0 : 32*1024; j += 1024 

Picking Satellite[j] 

corrValue = correlate (Satellite[i] , 
Satellite[j]) 

fitnessValue += (1-correlationValue) 

end 

Init. new population 
 

Iterating through 
sorted individuals 

Elitism 
& Crossover rate 

check 

Picking second individual with 
roulette selection  

Applying crossover to parents 

Adding child individual to new 
population 

end 
Figure 2. Fitness calculation function’s block diagram 

Figure 3. Crossover function’s block diagram 

219



1.5. Mutation. 
Mutation is applied to each individual in population. This step 
allows to randomly change the individuals in population. 
Important parameter here is the mutation rate, which is usually 
a small number. Bits in individual will be mutated depending 
on the mutation rate value. While mutation, we will generate a 
random number between [0,1) if it is smaller than mutation rate 
value, mutation will be applied to individual’s bit, if value is 
higher than mutation rate it will still be unchanged as shown in 
Figure 4.  

As in case of crossover, elitism count will be used here as well, 
in order to keep the individuals with higher fitness values 
without mutation [6]. 

2. CODE GENERATION PROGRAM
Based on the discussions in the last sections we can now 
generate C/A code sequences based on genetic algorithms. For 
testing first we need to run “DiffCodes.java”class [9]. Here we 
can specify mutation rate, crossover rate, elitism count, 
population size and effective generation count. After 
specifying these parameters we can run the program. The 
program will automatically stop when the required fitness 
value will be achieved and 32 code sequences for each satellite 
will be written on local disc in .txt format, so we can compare 
generated code sequences with real generated C/A codes. For 
generating C/A codes based on LFSRs we are going to use 
“GPSGenerator” library [8].  After generating both kinds of 
code sequences we can see that they have nearly the same high 
autocorrelation and low cross correlation values. 

3. CONCLUSION
As a result, we will have code generation program that is based 
on genetic algorithms which will generate 32 codes for each 
GPS satellites with nearly same parameters as originally 
generated C/A codes with LFSR algorithms. 

The program is available in GitHub [3] repository. We can also 
compare the generated GPS C/A codes [8] with codes that are 
generated with our program with Correlation library, which is 
also available on GitHub [7]. 

REFERENCES
[1] James Bao-Yen Tsui, “Fundaments of Global Positioning

System Receivers: A Software Approach”, A Wiley
Interscience publication, year 2000.

[2] Lee Jacobson, Burak Kanber, "Genetic Algorithms in Java
Basics", Apress publishing house, year 2015.

[3] Project reference in GitHub repository -
https://github.com/RobertApikyan/CodeGenWithGeneticAlg
orithm

[4] Individual reference in GitHub repository -
https://github.com/RobertApikyan/CodeGenWithGeneticAlg
orithm/blob/master/src/diffCodes/CodeIndividual.java

[5] Population reference in GitHub repository -
https://github.com/RobertApikyan/CodeGenWithGeneticAlg
orithm/blob/master/src/diffCodes/CodesPopulation.java

[6] Termination condition, fitness, crossover, mutation,
functions implementation reference -
https://github.com/RobertApikyan/CodeGenWithGeneticAlg
orithm/blob/master/src/diffCodes/GeneticAlgorithm.java

[7] GpsToolkit program’s reference -
https://github.com/RobertApikyan/GPSToolkit

[8] GpsGenerator program’s reference -
https://github.com/RobertApikyan/GpsGenerator

[9] CodeDiff.java class reference -
https://github.com/RobertApikyan/CodeGenWithGeneticAlg
orithm/blob/master/src/diffCodes/DiffCodes.java

Init. new population 
 

Iterating through 
individuals 

Elitism 
& Mutation rate 

check 

Applying mutation to individual 

Adding individual to new 
population 

Figure 4. Mutation function’s block diagram 

220

https://github.com/RobertApikyan/CodeGenWithGeneticAlgorithm
https://github.com/RobertApikyan/CodeGenWithGeneticAlgorithm
https://github.com/RobertApikyan/CodeGenWithGeneticAlgorithm/blob/master/src/diffCodes/CodeIndividual.java
https://github.com/RobertApikyan/CodeGenWithGeneticAlgorithm/blob/master/src/diffCodes/CodeIndividual.java
https://github.com/RobertApikyan/CodeGenWithGeneticAlgorithm/blob/master/src/diffCodes/CodesPopulation.java
https://github.com/RobertApikyan/CodeGenWithGeneticAlgorithm/blob/master/src/diffCodes/CodesPopulation.java
https://github.com/RobertApikyan/CodeGenWithGeneticAlgorithm/blob/master/src/diffCodes/GeneticAlgorithm.java
https://github.com/RobertApikyan/CodeGenWithGeneticAlgorithm/blob/master/src/diffCodes/GeneticAlgorithm.java
https://github.com/RobertApikyan/GPSToolkit
https://github.com/RobertApikyan/GpsGenerator
https://github.com/RobertApikyan/CodeGenWithGeneticAlgorithm/blob/master/src/diffCodes/DiffCodes.java
https://github.com/RobertApikyan/CodeGenWithGeneticAlgorithm/blob/master/src/diffCodes/DiffCodes.java

	DT.pdf (p.85-107)
	DT_Title.pdf (p.1)
	New - Copy.pdf (p.2)
	50_190603_181912_DT_FinalSubmissionCSIT2019_FINAL.pdf (p.3-6)
	53_190607_110134_DT_CSIT_2019_Accurate_Pressure_Calculation_Method.pdf (p.7-10)
	81_190731_112131_DT_CSIT2019_p2_final.pdf (p.11-14)
	82_190731_130632_DT_CSIT2019_p1_final.pdf (p.15-18)
	DT_P_Title.pdf (p.19)
	New.pdf (p.20)
	03_190326_015335_DT_petrosyan1_FINAL.pdf (p.21-23)

	ITCT.pdf (p.142-150)
	ITCT_Title.pdf (p.1)
	New.pdf (p.2)
	73_190710_184356_ITCT_CSIT_Haroutunian_FINAL.pdf (p.3-6)
	69_190628_160849_ITCT_wiretap_csit_FINAL.pdf (p.7-9)


