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Abstract—Today, neural networks are successfully applied to 

many different problems. Among them, a large class of problems 

related to computer vision can be distinguished. In this area, the 

use of convolutional neural networks is particularly successful. 

Most of the existing neural network architectures are trained on 

large clusters that require a large amount of computational 

resources. Therefore, urgent is the task of optimizing neural 

networks, which can include both increasing performance and 

reducing the size of the computing power used. In this paper, we 

propose a method for optimizing (increasing the performance 

and reducing the amount of consumed resources) of a 

convolutional neural network, applicable in conditions of 

redundancy in the input data. Using the Caltech256 dataset and 

VGG16 network architecture, it was shown that the proposed 

method can improve network performance by 10% while 

maintaining accuracy and reducing the amount of resources 

consumed by 25%. 

Keywords—Neural networks, convolutional network, neural 

network optimization, knowledge distillation, classification, 

VGG16, Caltech256. 

 

I. INTRODUCTION  

In general, methods of optimization of neural networks 

can be divided into three groups [1]: 

1. Optimization of architecture and hyperparameters. You 

can replace the architecture with a faster one (for example, 

change the recurrent neural network to a convolutional one) 

or use layers that require less computation. The selection of 

hyperparameters, such as the learning rate, batch size, and the 

number of learning epochs, can be attributed to the same 
optimization category. 

2. Model compression: usually either quantization is used 

– a decrease in the numerical accuracy of the values of the 

weights of the network after training, or the so-called pruning 

– the removal of weights of lesser significance from the 

model, followed by the formation of sparse matrices of 

weights. 

3. Knowledge distillation: a neural network training 

method in which a smaller model (student) is trained to 

simulate a previously trained larger model (teacher), that is, 

the original model is “distilled” into a smaller model [2, 3]. 

Generally speaking, the problem of optimization of the 

methods for working with data assumes some data 

redundancy, the level of which is sufficient so that the 
optimized method does not produce a worse result than the 

original one. In this paper, we propose a method for 

optimizing a convolutional neural network based on the 

assumption of redundancy in the initial data, which increases 

performance and reduces the amount of consumed resources: 

first, the degree of data redundancy is estimated, and then the 

neural network is directly optimized using the approaches of 

changing the network architecture and knowledge distillation.  

The proposed method is described in the next section. 
 

II. PROPOSED OPTIMIZATION METHOD 

A. First Stage 

At the first stage of the proposed method, it is proposed to 

assess the presence of information redundancy in the initial 

data by studying the influence of various methods of 

preliminary distortion of the input data, implying the loss of a 

certain amount of initial information, on the result of training 

a neural network on a given set of images. These nine methods 

are described below. 

Each image is divided into 2x2 squares. According to 

Figure 1, in each such square containing four pixels, the color 

of green pixels is replaced in the first case by the average color 

of the image (the arithmetic mean between the colors of all the 
pixels in the image), in the second – by black (value (0, 0, 0)), 

in the third – by white (value (1, 1, 1)). So tiling 1/4 of the 

image with medium / black / white are designated as MH, 

MH0 and MH1, respectively, 2/4 of the image – as CHB, 

CHB0 and CHB1, and 3/4 of the image – as GRI, GRI0 and 

GRI1. 
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a) b) c) 

Figure 1. Pixels that are being changed during various 

operations: a) MH, MH0 and MH1; b) CHB, CHB0 and 

CHB1; c) GRI, GRI0 and GRI1 

 
The DN label indicates the operation of copying an image 

without modification. 

It is proposed to train the neural network on three samples 

of the initial data using each of 10 tiling methods (including 

DN for generality). If the result of training, namely, the values 

of the network loss function together with the value of errors 

on the test sample, for any of the tiling methods will be 

comparable to DN or better than DN (that is, the values of the 

loss function and the error values for this tiling method are 

equal or less than the same values for the DN case), the fact 

of the presence of redundancy in the data will be established. 

In this case, it is worth moving on to the next stage, and 
otherwise, it should be concluded that the proposed method is 

not applicable to the dataset studied. 

B. Second Stage 

At the second stage, it is proposed to change the input layer of 

the convolutional neural network. Namely, it is proposed to 
impose various binary masks (3x3) on the convolutional filter 

(3x3) of the input layer. Thus, one can "reproduce" the effect 

of tiling the original images with black (since multiplying by 

0 in the mask is equivalent to filling the pixel with black). And 

what amount of the original data is “virtually tiled” with black 

(that is, literally, what amount of the information one is 

getting rid of), just characterizes the “degree of redundancy” 

of the input data. 

The masks proposed at this stage correspond to various 

types of image tiling with black, described in the previous 

stage (i.e., MH0, CHB0, GRI0). This correspondence is 

achieved due to the fact that the step of the convolutional filter 
is equal to 2, therefore, the passage of the filter with such a 

mask over the entire image is "equivalent" to the previously 

considered operation of tiling an image using a pattern of 2x2 

squares, which is highlighted in the following figures of 

masks by a dashed outline. 

It should be noted, however, that the aforementioned 

"equivalence" is not meant in the strict sense: the tiling effect 

is not fully reproduced. At the stage with image tiling, the 

convolutional kernel stride of 1 is used, and at this stage it is 

equal to 2. Such an increase of the stride of the convolutional 

kernel, firstly, causes a 2-fold decrease in the spatial 
dimensions of the feature maps both in width and height, and 

secondly, reduces the area of intersection of adjacent 

convolutions. 

Figures 2, 3 and 4 show the masks corresponding to the 

MH0, CHB0 and GRI0 methods, respectively. Each mask is 

denoted by a binary sequence, which is obtained by reading 

the mask from top to bottom line by line from left to right. 

The experiment was also performed for a mask 

111111111, and the results obtained for this case were used as 

a reference for comparing the effect of each mask on the 

learning result. 
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Figure 2. Convolutional filter masks, the use of which is 

"equivalent" to the MH0 operation: a) 010111010, b) 

111101111, c) 101111101, d) 111010111 
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Figure 3. Masks of the convolutional filter, the use of which 

is "equivalent" to the operation CHB0: a) 101010101, b) 

010101010 
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Figure 4. Convolutional filter masks, the use of which is 

"equivalent" to the GRI0 operation: a) 101000101, b) 

000010000, c) 010000010, d) 000101000 
 

It is proposed to train the neural network on three samples 

of the initial data, with the imposition of each of the above 

masks on the convolutional filter of the input layer (including 

for generality a mask consisting of all ones – 111111111). If 

the training result, namely, the values of the network loss 

function, the values of errors on the test sample, the values of 

the precision and recall metrics, for the case of applying a 

certain mask, will be comparable or better than the result with 

the mask 111111111 (then i.e., the values of the loss function 

and the error values for that mask usage are equal or less, and 
the values of the precision and recall metrics are equal or 

greater than the same values for the result with the mask 

111111111), then, depending on which of the operations 

MH0, CHB0, GRI0 application of this mask is "equivalent", 

it will be possible to conclude about the "amount of redundant 

information" in the input data – 1/4, 1/2 or 3/4, respectively. 

In this case, it is worth moving on to the next stage. If no 

improvement in the result is observed, but at the first stage the 

fact of the presence of redundancy in the data was established, 

it is worth concluding that the "type" of this redundancy, 

which the data tiling operation made it possible to reveal, 
cannot be identified / "repeated" with the described at this 

stage attempt to zero out some pixels. In this case, the 

proposed method will be inapplicable for the studied data set. 

C. Third Stage 

At the third stage, the network is optimized. 

The idea under the optimization is as follows: if there is a 
disposal of any amount of the data that does not cause a 

deterioration in the result of the network operation (that is, 

such that should have been observed in the previous 

subsection), then the assumption arises that a decrease in the 

number of training parameters of the network, respectively, 

for the same amount can have a similar effect of non-

degradation of accuracy. Such a “lightweight” network model 
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can be trained using an already trained original network using 

a knowledge distillation approach. 

 

III. EXPERIMENT SETUP 

The images were taken from the Caltech256 dataset [4], 
10 classes containing an equal number of images were 

selected (the classification problem was solved). One seventh 

of the images from each class was used to compose the test 

sample. The set of other images constituted the training 

sample, and it was augmented with applying of rotations up to 

60 degrees, Gaussian noise with variance up to 20, vertical or 

horizontal reflections of about half of the images. As a result, 

the training set contained 9666 images, and the test set – 297. 

There were three such pairs “test set + training set” prepared. 

Thus, the idea of k-fold cross-validation with k = 3 is 

implemented [5]. 

The experiments were carried out using a neural network 
with the VGG16 architecture and an input layer size of 128 by 

128. For each variant of the experiment, the network was 

trained using the Adam optimizer [6] with the following 

parameters: learning rate = 0.001; number of epochs was 20 

(100 iterations for each epoch); and the Focal Loss with 

parameter  𝛾= 0.5 was used as a loss function. 

The described training parameters were selected as a result 

of tests and observations of changes in accuracy and values of 

loss functions in the process of training the network on the 

initial input data (without modification). In each variant of the 
experiment, the network was trained with the given parameter 

values five times, and the training results were averaged. 

The networks were built and further trained using the 

MakiFlow framework [7]. When implementing this network 

model, batch normalization was used on each layer [8]. 

 

IV. METHOD VERIFICATION 

A. First Stage 

At the first stage, the data redundancy was estimated by tiling 

the original images. Each image entering the input of the 
neural network was reduced to a size of 128 × 128, and then 

subjected to one of the modification methods. 

The achieved values of the error rate of networks (the 

proportion of incorrectly classified images from among all 

images) trained using various methods of preliminary 

distortion of the input data are presented in Table 1. 

 

Table 1. Error rate values of trained networks on a test dataset 

Tiling method Set #1 Set #2 Set #3 

DN 0,36 0,38 0,32 

MH 0,40 0,34 0,37 

CHB 0,44 0,42 0,44 

GRI 0,51 0,41 0,51 

MH0 0,36 0,30 0,31 

CHB0 0,36 0,33 0,34 

GRI0 0,35 0,35 0,36 

MH1 0,44 0,37 0,35 

CHB1 0,38 0,32 0,32 

GRI1 0,37 0,37 0,40 

 

Analyzing the obtained error values, we can conclude that 

the MH0 tiling method is the most effective way to reduce the 

network error in relation to this dataset, which determines the 

nature of the data redundancy in the dataset. 

B. Second Stage 

At the second stage, the effect of imposing different masks on 

the convolutional filter of the input layer on the result of 

training a neural network on a given set of images was 

investigated. 

To assess the results of the experiment, the accuracy, 

precision and recall metrics were calculated, which are shown 
in Table 2. 

 

Table 2. Overall accuracy, precision and recall values 

obtained as a result of the experiment 

Convolutional 

filter mask 

Overal 

accuaracy 

Overall 

precision 

Overall 

recall 

111111111 1-0,34 0,68 0,67 

010111010 1-0,33 0,68 0,67 

111101111 1-0,36 0,66 0,68 

101111101 1-0,34 0,69 0,68 

111010111 1-0,36 0,68 0,69 

101010101 1-0,37 0,66 0,70 

010101010 1-0,36 0,67 0,69 

101000101 1-0,34 0,69 0,66 

000010000 1-0,34 0,68 0,69 

010000010 1-0,34 0,67 0,70 

000101000 1-0,31 0,70 0,68 

 

It can be seen that lower values of the network accuracy 

correspond to higher values of the precision and recall 

metrics. This is in line with expectations, since there is no 

class imbalance in the dataset [9], and it convinces us that 

using only the network error as a metric for assessing the 
quality of the result is justified. 

The results obtained allow us to conclude that, in relation 

to this dataset, in general, the best result was shown by using 

the mask 101111101. Since the use of this mask is 

"equivalent" to the MH0 operation, which tilts a quarter of the 

image, presumably, the "amount of redundant information" in 

the input data is 1/4. It should be noted that this result 

corresponds to the result of the first stage (about achieving the 

best result when using the tiling MH0). 

Thus, the amount of information redundancy was 

estimated – 1/4. 

C. Third Stage 

At the third stage, an experiment was carried out on the 

application of the knowledge distillation approach for training 

a network "lightweighted" by 1/4 weights.  

The architecture of the lightweight network is shown in 

Figure 5. This is the original network, from which two layers 
have been removed as shown in Figure 5. 

The number of trained parameters of this network is 

11319434, while the original network has 16042058 training 

parameters. Thus, the "lightweight" network has 29.4% fewer 

learning parameters, in other words, it is just getting rid of a 

quarter of the weights that takes place. 
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Figure 5. "Lightweight" version of the network architecture 

(removed layers are crossed out) 

 

For each of the three samples, the teacher network 

(original network) was trained with the same parameters as in 

previous experiments. The learning parameters of the student 

network were the same as those of the teacher, except for the 

main loss function (before the addition of the distillation loss 

function) – in this case, not Focal Loss, but the usual cross-

entropy was used. 

The Focal Loss function at 𝛾 = 0 is the same as the Cross 

Entropy function: the Focal Loss function has historically 

been proposed as a generalization of Cross Entropy. 

The values of the network error rate calculated after 

training, which are presented in Table 3, make it possible to 

verify this. 

 

Table 3. Values of the network error rate calculated after 

training 
 Set #1 Set #2 Set #3 

Teacher network 0,34 0,34 0,36 

Student network 0,29 0,30 0,30 

 

The results of measuring the average time spent on the 

classification of one image by the "lightweight" network are 

presented in Table 4. 

 

Table 4. Average time of classification of one image, ms 
 Set #1 Set #2 Set #3 

Teacher network 0,92 0,95 0,95 

Student network 0,83 0,87 0,84 

Inference time gain 10% 8% 12% 

 

Based on the results presented in Table 4, there is an 

acceleration of the network inference time by 10%. 

Thus, the knowledge distillation carried out in the 

presented way made it possible to train a network on a given 
dataset, which has 29.4% less parameters compared to the 

original architecture, so that there was an acceleration of the 

network inference time by 10%. In addition to this, it was also 

observed that the error rate values of the student network are 

less than those of the teacher network.  

Thus, the proposed method of network optimization, based 

on the "amount of information redundancy" in the data, really 

allows one to increase the network performance (in this case, 

by 10%) and reduce the amount of resources consumed by it 

(in this case, by 29.4%) while maintaining accuracy. 

 

V. CONCLUSION 

In this paper, a method was proposed for a convolutional 

neural network optimization (i.e. increasing performance and 

reducing the amount of consumed resources), which is 

coordinated with the data set. The essence of the method 

consists in a preliminary assessment of the degree of data 

redundancy and subsequent appropriate optimization of the 

neural network using approaches of network architecture 

changing and knowledge distillation. 

Experiments were carried out in accordance with the 
proposed method. The experimental results showed that the 

amount of data redundancy in the set used can be estimated 

(using the input layer filtering approach) as 1/4 and that the 

network model trained using the knowledge distillation 

approach, "lightened" by 1/4 weights relative to the original 

model, processes each image is 10% faster, and the error rate 

values of the optimized network turned out to be not only 

comparable, but also less than the error values of the original 

network on the used dataset. 
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