

A Method of Coordinated Optimization of Neural

Network Parameters for a Given Set of Images

Rail Gabbasov

Samara National Research University
Samara, Russia

e-mail: rail.g.r@gmail.com

Rustam Paringer
Samara National Research University

IPSI RAS - branch of the FSRC
«Crystallography and Photonics» RAS

Samara, Russia
e-mail: rusparinger@gmail.com

Alexander Kupriyanov
Samara National Research University

IPSI RAS - branch of the FSRC
«Crystallography and Photonics» RAS

Samara, Russia
e-mail: akupr@ssau.ru

David Asatryan

Institute for informatics and automation
problems of NAS Armenia

Russian-Armenian university

Yerevan, Armenia
e-mail: dasat@iiap.sci.am

Mariam Haroutunian

Institute for informatics and automation
problems of NAS Armenia

Yerevan, Armenia

e-mail: armar@sci.am

Abstract—Today, neural networks are successfully applied to

many different problems. Among them, a large class of problems

related to computer vision can be distinguished. In this area, the

use of convolutional neural networks is particularly successful.

Most of the existing neural network architectures are trained on

large clusters that require a large amount of computational

resources. Therefore, urgent is the task of optimizing neural

networks, which can include both increasing performance and

reducing the size of the computing power used. In this paper, we

propose a method for optimizing (increasing the performance

and reducing the amount of consumed resources) of a

convolutional neural network, applicable in conditions of

redundancy in the input data. Using the Caltech256 dataset and

VGG16 network architecture, it was shown that the proposed

method can improve network performance by 10% while

maintaining accuracy and reducing the amount of resources

consumed by 25%.

Keywords—Neural networks, convolutional network, neural

network optimization, knowledge distillation, classification,

VGG16, Caltech256.

I. INTRODUCTION

In general, methods of optimization of neural networks

can be divided into three groups [1]:

1. Optimization of architecture and hyperparameters. You

can replace the architecture with a faster one (for example,

change the recurrent neural network to a convolutional one)

or use layers that require less computation. The selection of

hyperparameters, such as the learning rate, batch size, and the

number of learning epochs, can be attributed to the same
optimization category.

2. Model compression: usually either quantization is used

– a decrease in the numerical accuracy of the values of the

weights of the network after training, or the so-called pruning

– the removal of weights of lesser significance from the

model, followed by the formation of sparse matrices of

weights.

3. Knowledge distillation: a neural network training

method in which a smaller model (student) is trained to

simulate a previously trained larger model (teacher), that is,

the original model is “distilled” into a smaller model [2, 3].

Generally speaking, the problem of optimization of the

methods for working with data assumes some data

redundancy, the level of which is sufficient so that the
optimized method does not produce a worse result than the

original one. In this paper, we propose a method for

optimizing a convolutional neural network based on the

assumption of redundancy in the initial data, which increases

performance and reduces the amount of consumed resources:

first, the degree of data redundancy is estimated, and then the

neural network is directly optimized using the approaches of

changing the network architecture and knowledge distillation.

The proposed method is described in the next section.

II. PROPOSED OPTIMIZATION METHOD

A. First Stage

At the first stage of the proposed method, it is proposed to

assess the presence of information redundancy in the initial

data by studying the influence of various methods of

preliminary distortion of the input data, implying the loss of a

certain amount of initial information, on the result of training

a neural network on a given set of images. These nine methods

are described below.

Each image is divided into 2x2 squares. According to

Figure 1, in each such square containing four pixels, the color

of green pixels is replaced in the first case by the average color

of the image (the arithmetic mean between the colors of all the
pixels in the image), in the second – by black (value (0, 0, 0)),

in the third – by white (value (1, 1, 1)). So tiling 1/4 of the

image with medium / black / white are designated as MH,

MH0 and MH1, respectively, 2/4 of the image – as CHB,

CHB0 and CHB1, and 3/4 of the image – as GRI, GRI0 and

GRI1.

CSIT Conference 2021, Yerevan, Armenia, September 27 - October 1

13

a) b) c)

Figure 1. Pixels that are being changed during various

operations: a) MH, MH0 and MH1; b) CHB, CHB0 and

CHB1; c) GRI, GRI0 and GRI1

The DN label indicates the operation of copying an image

without modification.

It is proposed to train the neural network on three samples

of the initial data using each of 10 tiling methods (including

DN for generality). If the result of training, namely, the values

of the network loss function together with the value of errors

on the test sample, for any of the tiling methods will be

comparable to DN or better than DN (that is, the values of the

loss function and the error values for this tiling method are

equal or less than the same values for the DN case), the fact

of the presence of redundancy in the data will be established.

In this case, it is worth moving on to the next stage, and
otherwise, it should be concluded that the proposed method is

not applicable to the dataset studied.

B. Second Stage

At the second stage, it is proposed to change the input layer of

the convolutional neural network. Namely, it is proposed to
impose various binary masks (3x3) on the convolutional filter

(3x3) of the input layer. Thus, one can "reproduce" the effect

of tiling the original images with black (since multiplying by

0 in the mask is equivalent to filling the pixel with black). And

what amount of the original data is “virtually tiled” with black

(that is, literally, what amount of the information one is

getting rid of), just characterizes the “degree of redundancy”

of the input data.

The masks proposed at this stage correspond to various

types of image tiling with black, described in the previous

stage (i.e., MH0, CHB0, GRI0). This correspondence is

achieved due to the fact that the step of the convolutional filter
is equal to 2, therefore, the passage of the filter with such a

mask over the entire image is "equivalent" to the previously

considered operation of tiling an image using a pattern of 2x2

squares, which is highlighted in the following figures of

masks by a dashed outline.

It should be noted, however, that the aforementioned

"equivalence" is not meant in the strict sense: the tiling effect

is not fully reproduced. At the stage with image tiling, the

convolutional kernel stride of 1 is used, and at this stage it is

equal to 2. Such an increase of the stride of the convolutional

kernel, firstly, causes a 2-fold decrease in the spatial
dimensions of the feature maps both in width and height, and

secondly, reduces the area of intersection of adjacent

convolutions.

Figures 2, 3 and 4 show the masks corresponding to the

MH0, CHB0 and GRI0 methods, respectively. Each mask is

denoted by a binary sequence, which is obtained by reading

the mask from top to bottom line by line from left to right.

The experiment was also performed for a mask

111111111, and the results obtained for this case were used as

a reference for comparing the effect of each mask on the

learning result.

0 1 0

1 1 1

0 1 0

1 1 1

1 0 1

1 1 1

1 0 1

1 1 1

1 0 1

1 1 1

0 1 0

1 1 1

a) b) c) d)

Figure 2. Convolutional filter masks, the use of which is

"equivalent" to the MH0 operation: a) 010111010, b)

111101111, c) 101111101, d) 111010111

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

a) b)

Figure 3. Masks of the convolutional filter, the use of which

is "equivalent" to the operation CHB0: a) 101010101, b)

010101010

1 0 1

0 0 0

1 0 1

0 0 0

0 1 0

0 0 0

0 1 0

0 0 0

0 1 0

0 0 0

1 0 1

0 0 0

a) b) c) d)

Figure 4. Convolutional filter masks, the use of which is

"equivalent" to the GRI0 operation: a) 101000101, b)

000010000, c) 010000010, d) 000101000

It is proposed to train the neural network on three samples

of the initial data, with the imposition of each of the above

masks on the convolutional filter of the input layer (including

for generality a mask consisting of all ones – 111111111). If

the training result, namely, the values of the network loss

function, the values of errors on the test sample, the values of

the precision and recall metrics, for the case of applying a

certain mask, will be comparable or better than the result with

the mask 111111111 (then i.e., the values of the loss function

and the error values for that mask usage are equal or less, and
the values of the precision and recall metrics are equal or

greater than the same values for the result with the mask

111111111), then, depending on which of the operations

MH0, CHB0, GRI0 application of this mask is "equivalent",

it will be possible to conclude about the "amount of redundant

information" in the input data – 1/4, 1/2 or 3/4, respectively.

In this case, it is worth moving on to the next stage. If no

improvement in the result is observed, but at the first stage the

fact of the presence of redundancy in the data was established,

it is worth concluding that the "type" of this redundancy,

which the data tiling operation made it possible to reveal,
cannot be identified / "repeated" with the described at this

stage attempt to zero out some pixels. In this case, the

proposed method will be inapplicable for the studied data set.

C. Third Stage

At the third stage, the network is optimized.

The idea under the optimization is as follows: if there is a
disposal of any amount of the data that does not cause a

deterioration in the result of the network operation (that is,

such that should have been observed in the previous

subsection), then the assumption arises that a decrease in the

number of training parameters of the network, respectively,

for the same amount can have a similar effect of non-

degradation of accuracy. Such a “lightweight” network model

14

can be trained using an already trained original network using

a knowledge distillation approach.

III. EXPERIMENT SETUP

The images were taken from the Caltech256 dataset [4],
10 classes containing an equal number of images were

selected (the classification problem was solved). One seventh

of the images from each class was used to compose the test

sample. The set of other images constituted the training

sample, and it was augmented with applying of rotations up to

60 degrees, Gaussian noise with variance up to 20, vertical or

horizontal reflections of about half of the images. As a result,

the training set contained 9666 images, and the test set – 297.

There were three such pairs “test set + training set” prepared.

Thus, the idea of k-fold cross-validation with k = 3 is

implemented [5].

The experiments were carried out using a neural network
with the VGG16 architecture and an input layer size of 128 by

128. For each variant of the experiment, the network was

trained using the Adam optimizer [6] with the following

parameters: learning rate = 0.001; number of epochs was 20

(100 iterations for each epoch); and the Focal Loss with

parameter 𝛾= 0.5 was used as a loss function.

The described training parameters were selected as a result

of tests and observations of changes in accuracy and values of

loss functions in the process of training the network on the

initial input data (without modification). In each variant of the
experiment, the network was trained with the given parameter

values five times, and the training results were averaged.

The networks were built and further trained using the

MakiFlow framework [7]. When implementing this network

model, batch normalization was used on each layer [8].

IV. METHOD VERIFICATION

A. First Stage

At the first stage, the data redundancy was estimated by tiling

the original images. Each image entering the input of the
neural network was reduced to a size of 128 × 128, and then

subjected to one of the modification methods.

The achieved values of the error rate of networks (the

proportion of incorrectly classified images from among all

images) trained using various methods of preliminary

distortion of the input data are presented in Table 1.

Table 1. Error rate values of trained networks on a test dataset

Tiling method Set #1 Set #2 Set #3

DN 0,36 0,38 0,32

MH 0,40 0,34 0,37

CHB 0,44 0,42 0,44

GRI 0,51 0,41 0,51

MH0 0,36 0,30 0,31

CHB0 0,36 0,33 0,34

GRI0 0,35 0,35 0,36

MH1 0,44 0,37 0,35

CHB1 0,38 0,32 0,32

GRI1 0,37 0,37 0,40

Analyzing the obtained error values, we can conclude that

the MH0 tiling method is the most effective way to reduce the

network error in relation to this dataset, which determines the

nature of the data redundancy in the dataset.

B. Second Stage

At the second stage, the effect of imposing different masks on

the convolutional filter of the input layer on the result of

training a neural network on a given set of images was

investigated.

To assess the results of the experiment, the accuracy,

precision and recall metrics were calculated, which are shown
in Table 2.

Table 2. Overall accuracy, precision and recall values

obtained as a result of the experiment

Convolutional

filter mask

Overal

accuaracy

Overall

precision

Overall

recall

111111111 1-0,34 0,68 0,67

010111010 1-0,33 0,68 0,67

111101111 1-0,36 0,66 0,68

101111101 1-0,34 0,69 0,68

111010111 1-0,36 0,68 0,69

101010101 1-0,37 0,66 0,70

010101010 1-0,36 0,67 0,69

101000101 1-0,34 0,69 0,66

000010000 1-0,34 0,68 0,69

010000010 1-0,34 0,67 0,70

000101000 1-0,31 0,70 0,68

It can be seen that lower values of the network accuracy

correspond to higher values of the precision and recall

metrics. This is in line with expectations, since there is no

class imbalance in the dataset [9], and it convinces us that

using only the network error as a metric for assessing the
quality of the result is justified.

The results obtained allow us to conclude that, in relation

to this dataset, in general, the best result was shown by using

the mask 101111101. Since the use of this mask is

"equivalent" to the MH0 operation, which tilts a quarter of the

image, presumably, the "amount of redundant information" in

the input data is 1/4. It should be noted that this result

corresponds to the result of the first stage (about achieving the

best result when using the tiling MH0).

Thus, the amount of information redundancy was

estimated – 1/4.

C. Third Stage

At the third stage, an experiment was carried out on the

application of the knowledge distillation approach for training

a network "lightweighted" by 1/4 weights.

The architecture of the lightweight network is shown in

Figure 5. This is the original network, from which two layers
have been removed as shown in Figure 5.

The number of trained parameters of this network is

11319434, while the original network has 16042058 training

parameters. Thus, the "lightweight" network has 29.4% fewer

learning parameters, in other words, it is just getting rid of a

quarter of the weights that takes place.

15

Figure 5. "Lightweight" version of the network architecture

(removed layers are crossed out)

For each of the three samples, the teacher network

(original network) was trained with the same parameters as in

previous experiments. The learning parameters of the student

network were the same as those of the teacher, except for the

main loss function (before the addition of the distillation loss

function) – in this case, not Focal Loss, but the usual cross-

entropy was used.

The Focal Loss function at 𝛾 = 0 is the same as the Cross

Entropy function: the Focal Loss function has historically

been proposed as a generalization of Cross Entropy.

The values of the network error rate calculated after

training, which are presented in Table 3, make it possible to

verify this.

Table 3. Values of the network error rate calculated after

training
 Set #1 Set #2 Set #3

Teacher network 0,34 0,34 0,36

Student network 0,29 0,30 0,30

The results of measuring the average time spent on the

classification of one image by the "lightweight" network are

presented in Table 4.

Table 4. Average time of classification of one image, ms
 Set #1 Set #2 Set #3

Teacher network 0,92 0,95 0,95

Student network 0,83 0,87 0,84

Inference time gain 10% 8% 12%

Based on the results presented in Table 4, there is an

acceleration of the network inference time by 10%.

Thus, the knowledge distillation carried out in the

presented way made it possible to train a network on a given
dataset, which has 29.4% less parameters compared to the

original architecture, so that there was an acceleration of the

network inference time by 10%. In addition to this, it was also

observed that the error rate values of the student network are

less than those of the teacher network.

Thus, the proposed method of network optimization, based

on the "amount of information redundancy" in the data, really

allows one to increase the network performance (in this case,

by 10%) and reduce the amount of resources consumed by it

(in this case, by 29.4%) while maintaining accuracy.

V. CONCLUSION

In this paper, a method was proposed for a convolutional

neural network optimization (i.e. increasing performance and

reducing the amount of consumed resources), which is

coordinated with the data set. The essence of the method

consists in a preliminary assessment of the degree of data

redundancy and subsequent appropriate optimization of the

neural network using approaches of network architecture

changing and knowledge distillation.

Experiments were carried out in accordance with the
proposed method. The experimental results showed that the

amount of data redundancy in the set used can be estimated

(using the input layer filtering approach) as 1/4 and that the

network model trained using the knowledge distillation

approach, "lightened" by 1/4 weights relative to the original

model, processes each image is 10% faster, and the error rate

values of the optimized network turned out to be not only

comparable, but also less than the error values of the original

network on the used dataset.

ACKNOWLEDGMENT

This work was supported by the Russian Foundation for Basic
Research and RA Science Committee in the frames of the joint

research project RFBR 20-51-05008 Аrm_a and SCS 20RF-

144 accordingly.

REFERENCES

[1] G. Sapunov, (2019) “Speeding up BERT. How to make BERT models

faster”. [Online]. Available: https://blog.inten.to/speeding-up-bert-

5528e18bb4ea/

[2] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, “Model

compression”, Proceedings of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining, Philadelphia,

PA, USA, pp. 535-541, 2006.

[3] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a

neural network”, arXiv preprint, arXiv:1503.02531, 2015.

[4] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category

dataset”, California Institute of Technology, 2007.

[5] M. Stone, “Cross‐validatory choice and assessment of statistical

predictions”, Journal of the Royal Statistical Society: Series B

(Methodological), vol. 36, no. 2, pp. 111-133, 1974.

[6] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization”, arXiv preprint, arXiv:1412.6980, 2014.

[7] MakiResearchTeam, (2021) MakiFlow Framework. [Online].

Available: https://github.com/MakiResearchTeam/MakiFlow/

[8] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift”, International

Conference on Machine Learning, Lille, France, pp. 448-456, 2015.

[9] N. Japkowicz and S. Stephen, “The class imbalance problem: A

systematic study”, Intelligent data analysis, vol. 6, no. 5, pp. 429-449,

2002.

16

	I. Introduction
	II. Proposed Optimization Method
	A. First Stage
	B. Second Stage
	C. Third Stage

	III. Experiment Setup
	IV. Method Verification
	A. First Stage
	B. Second Stage
	C. Third Stage

	V. Conclusion
	Acknowledgment
	References

