
About the Possibility of Executing Tasks with a
Waiting Time Restriction in a Multiprocessor

System
Vladimir Sahakyan

Institute for Informatics and Automation Problems of
NAS RA

Yerevan, Armenia
email: vladimir.sahakyan@sci.am

Artur Vardanyan
Institute for Informatics and Automation Problems of

NAS RA
Yerevan, Armenia

email: artvardanyan@asnet.am

Abstract—The most actual problem of organizing computa-
tions in a cluster environment is the optimal use of system
resources, which is achieved by effective scheduling of the task ex-
ecution, taking into account the required resources and execution
time. This paper considers the priority of acceptance for service,
the admissible waiting time. To provide more optimal service, a
service model is considered in which service interruptions are
performed by creating checkpoints and keeping the interrupted
tasks in the queue. As a result, an algorithm was developed for
selecting tasks for servicing and determining the moment of the
next interruption.
Keywords— Multiprocessor System, Cluster computing, Queueing
theory, Multiprocessor Queueing System, Waiting time restric-
tion.

I. INTRODUCTION

The system software of a computing cluster consists of
a task control module(schedules and distributes tasks for
execution), parallel programming libraries(provide intercon-
nection between the processes of the parallel program) and
the operating system in which the processes of the parallel
program are executed. The most actual problem of organizing
computations in a cluster environment is the optimal use of
system resources, which is achieved by effective scheduling of
the task execution, taking into account the required resources
and execution time [1].
A compute cluster is a multi-user computing environment.
Users independently submit their tasks for execution. Tasks are
distributed among the nodes and executed. The Job Manage-
ment System (JMS) is a component of the cluster that performs
user task control and scheduling [2]. The job management
system basically consists of three components:

• queue manager,
• scheduler,
• resource manager.

The job of the queue manager is to receive job execution
requests from users and distribute them to the queue. The
queue manager interacts with the scheduler and dispatches
tasks to be executed to the resource manager. The queue
manager allows users to manage tasks that are in the queue and
receive information about the status of execution. In addition,

the queue manager takes notes about the use of resources and
fixes the execution history of the tasks.
The scheduler determines where and when the task can be
completed. To do that, it uses three types of information: job
resource requirements, node states, and cluster scheduling and
utilization policy. The scheduler receives information about the
required resources from the queue manager and information
about the state of the nodes from the resource manager [3].
The task Management System Scheduler provides the ability to
select standard scheduling algorithms, use custom algorithms,
or use an external scheduler. Common scheduling algorithms
include FCFS (First Come, First Served), SJF (Shortest Job
First), LJF (Longest Job First) [4] and fair-share and backfill-
ing algorithms.
The resource manager also monitors resources, periodically
collects information about the state of the nodes, and sends
that information to the scheduler as needed.
They include dynamic load balancing, fault tolerance, process
migration, priority interruption, and checkpoint creation [5].
Checkpoint creation is the process of saving the state of an
active process to the hard drive. The saved state can be used
to resume the execution of the process from the savepoint.
In [5], an algorithm was proposed that allows interrupting an
MPI program implemented using the SPMD model by creating
checkpoints, recording the state and then restoring programs
for execution.
Provided that processing of big data is required, in particular,
using the MapReduce technology [6], partial synchronization
of data processing is required. In this case, a processing task
arises with a restriction on the waiting time, and for the
scheduler, the order of execution of tasks is a priority to take
into account the interval in which the task must be serviced.
This paper considers the priority of acceptance for service, the
admissible waiting time.
To provide more optimal service, consider a service model
in which service interruptions are performed by creating
checkpoints and keeping the interrupted tasks in the queue.

CSIT Conference 2021, Yerevan, Armenia, September 27 - October 1

45

II. PROBLEM STATEMENT

Suppose that a task stream enters a computing system
consisting of m processors (m ≥ 1). Each task is characterized
by three random parameters (ν, β, ω), where ν is the number
of computational resources(processors, cores, cluster nodes,
etc.,) required to perform the task, β is the maximum time
required to complete the task and ω is the possible time that
the task can wait before assigning to run, after which it leaves
the system without service [4]. Obviously, there are other
parameters, but we are not interested in them for solving this
problem.
A task can be accepted for service only if it is possible to
complete it on time, i.e. the task must leave the system before
the moment β + ω, when counting from the moment of its
acceptance. Otherwise, it receives a denial of service. The aim
is to check the possibility of servicing a task if there is a queue
of tasks waiting to be serviced in the system.

III. ALGORITHM

Consider a service discipline in which, at certain points in
time, the jobs being serviced interrupt their service and return
to the queue for further servicing, i.e. their additional service
time is reduced by an amount equal to the time already served.
Thus, suppose we have tasks in the queue at some point in
time when there was a service interruption.

(ν1, β1, ω1), (ν2, β2, ω2), ..., (νn, βn, ωn)

Let us describe an algorithm for selecting service tasks and
determining the next interruption time:
Step 1: Let us determine the priorities for servicing tasks.

To do this, we sort the queue in ascending order of
acceptable wait times. After sorting, we get a queue:

{(νi, βi, ωi), i = 1, 2, ..., n},

and moreover

0 ≤ ω1 ≤ ω2 ≤ ... ≤ ωn.

Step 2: We choose for servicing in order of priority from the
beginning of the queue as many jobs as possible to
serve simultaneously, i.e. we find such k, that

ν1 + ν2 + ...+ νk ≤ m < ν1 + ν2 + ...+ νk+1

If k = n, then the right part of the inequality is
omitted, i.e. all tasks are served. We complete the
algorithm, i.e. all tasks will be served.
If that is not the case and after sorting it turns out that
ωk+1 = 0, then the queue cannot be serviced without
losses. We complete the algorithm with the statement
that not all jobs can be serviced.
If that is not the case, then we need to add to find
out whether it is possible to add jobs with numbers
k+2, k+3, ..., n from the queue in order of priority
for servicing. If there are such tasks, then add them
and enumerate the queue so that k will take a new

value. As a result, there will be k tasks selected, and
not selected n− k.

Step 3: We define the time interval until the next interruption
as

τ = min(β1, β2, ..., βk, ωk+1).

Step 4: We calculate the parameters of the queue at the
moment of the next interrupt:

(ν1, β1 − τ, ω1), ..., (νk, βk − τ, ωk),

(νk+1, βk+1, ωk+1 − τ), ..., (νn, βn, ωn − τ).

If the moment of interruption was the moment of the
end of service, then one of the serviced tasks will
leave the system and there will be n − 1 of them. If
the moment of interruption was not the moment of
the end of service, then there will be n tasks in the
queue, but for some, the admissible waiting time will
become equal to 0, in particular, ωk+1 = 0. We return
to the initial Step 1.

Obviously, tasks that are being serviced linearly decrease their
service time over time, and tasks that are in the queue decrease
their admissible waiting time, thereby increasing their priority.

IV. CONCLUSION

Thus, at the time of interruption, tasks that have shorter
admissible waiting times should be served earlier than tasks
that can wait longer. If this fails, then the queue cannot be
served without loss.
The proposed algorithm can serve as a necessary condition
for servicing tasks without interruption, i.e. if a queue cannot
be serviced interrupted, then it cannot be serviced without
interruption.
The proposed algorithm also conducts a preliminary assess-
ment of the state of the queue in the queuing system(Torque
with the Maui scheduler, etc.) and gives recommendations on
a possible order of service.

REFERENCES

[1] Hrachya Astsatryan, Aram Kocharyan, Daniel Hagimont, Arthur
Lalayan, ”Performance Optimization System for Hadoop and Spark
Frameworks”, Cybernetics and Information Technologies, Sofia, vol.
20, no. 6, pp. 5-17, 2020.

[2] Saeed Iqbal, Rinku Gupta, Yung-Chin Fang, ”Job Scheduling in HPC
Clusters”, Reprinted from Dell Power Solutions, 2005.

[3] D. G. Feitelson, L. Rudolph, ”Parallel job scheduling: Issues and
approaches, IPPS 95 Workshop: Job Scheduling Strategies for Parallel
Processing”, Springer-Verlag, New York, vol. 949, pp. 1-18, 1995.

[4] V. Sahakyan, A. Vardanyan, ”The State Probabilities of the System
M |M |m|n with the Waiting Time Restriction”, Computer Science and
Information Technologies, Yerevan, Armenia, pp.181-184, 2019.

[5] M. Movsisyan, V. Sahakyan, ”Transparent checkpointing protocol for
MPI programs with decentralized initiator”, Proceedings of Interna-
tional Conference on Computer Science and Information Technologies
(CSIT2007), Yerevan, pp. 227–229, 2007.

[6] Jeffrey Dean, Sanjay Ghemawat, ”MapReduce: Simplified Data Pro-
cessing on Large Clusters”, Sixth Symposium on Operating System
Design and Implementation, San Francisco, pp. 137-150, 2004.

46

